Synthesis, crystal structure and properties of trigonal bipyramidal [M(L5)2(H2O)]·H2O complexes [M = cobalt(II) (S = 3/2) or copper(II) (S = 1/2); HL5 = N-(2-chloro-6-methylphenyl)pyridine-2-carboxamide]

(Note: The full text of this document is currently only available in the PDF Version )

Apurba Kumar Patra, Manabendra Ray and Rabindranath Mukherjee


Abstract

Using a bidentate ligand N-(2-chloro-6-methylphenyl)pyridine-2-carboxamide (HL5), in its deprotonated form, two new five-co-ordinate complexes of composition [M(L5)2(H2O)]·H2O (M = CoII 1 or CuII 2) have been prepared and characterized including X-ray crystallography. The co-ordination geometry at CoII and CuII is approximately trigonal bipyramidal (two deprotonated amide nitrogens and a water molecule in the equatorial plane and two pyridines in the axial positions), being more distorted in the case of CuII. The observed distortion is caused by (i) a small bite angle of the chelating ligand and (ii) the presence of two ortho substituents, a chloro and a methyl group, on the phenyl ring (steric effect). To the best of our knowledge, 1 represents the first structurally characterized mononuclear high-spin cobalt(II) complex with a pyridine amide ligand. The magnetic moments of 1 and 2 at 300 K reveal that the compounds are paramagnetic (1 has S = 3/2 and 2 has S = 1/2), both as solids and in dmf solution. Temperature dependent magnetic susceptibility measurements confirmed their spin state. The stereochemistry of the cobalt(II) centre in 1 does not change to any measureable extent on dissolution in dmf (cf. solid and solution state absorption spectra). The geometry of the copper(II) centre in 2 observed in the solid state is not retained in dmf solution (absorption spectra), changing to a tetragonal stereochemistry. Cyclic voltammetric measurements (dmf solution; glassy carbon electrode) on 1 reveal an oxidative response at 0.48 V vs. saturated calomel electrode (SCE) and a reductive response at –1.66 V corresponding to CoIII–CoII and CoII–CoI redox couples, respectively. For 2 the CuII–CuI process was observed at –0.53 V vs. SCE.


References

  1. M. Ray, R. Mukherjee, J. F. Richardson, M. S. Mashuta and R. M. Buchanan, J. Chem. Soc., Dalton Trans., 1994, 965 RSC.
  2. (a) M. Ray, S. Mukerjee and R. Mukherjee, J. Chem. Soc., Dalton Trans., 1990, 3635 RSC; (b) M. Ray and R. Mukherjee, Polyhedron, 1992, 11, 2929 CrossRef CAS; (c) M. Ray, R. Mukherjee, J. F. Richardson and R. M. Buchanan, J. Chem. Soc., Dalton Trans., 1993, 2451 RSC; (d) A. K. Patra and R. Mukherjee, Polyhedron, 1999, 18, 1317 CrossRef CAS.
  3. (a) M. Ray, D. Ghosh, Z. Shirin and R. Mukherjee, Inorg. Chem., 1997, 36, 3568 CrossRef CAS; (b) A. K. Patra and R. Mukherjee, Inorg. Chem., 1999, 38, 1388 CrossRef CAS; (c) A. K. Patra, M. Ray and R. Mukherjee, unpublished results.
  4. (a) R. L. Chapman and R. S. Vagg, Inorg. Chim. Acta, 1979, 33, 227 CrossRef CAS; (b) R. L. Chapman, F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1980, 43, 29 CrossRef CAS; (c) M. Mulqi, F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1981, 52, 73 CrossRef CAS; (d) R. L. Chapman, F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1981, 52, 161 CrossRef CAS; (e) R. L. Chapman, F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1981, 52, 169 CrossRef CAS; (f) F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1982, 57, 9 CrossRef CAS; (g) F. S. Stephens and R. S. Vagg, Inorg. Chim. Acta, 1986, 120, 165 CrossRef CAS.
  5. M. Nonoyama and K. Yamasaki, Inorg. Chim. Acta, 1969, 3, 585; 1971, 5, 124 Search PubMed; M. Nonoyama, Inorg. Chim. Acta, 1974, 10, 59 Search PubMed.
  6. (a) C.-M. Che, J.-X. Ma, W.-T. Wong, T.-F. Lai and C.-K. Poon, Inorg. Chem., 1988, 27, 2547 CrossRef CAS; (b) W.-H. Leung, J.-X. Ma, V. W.-W. Yam, C.-M. Che and C.-K. Poon, J. Chem. Soc., Dalton Trans., 1991, 1071 RSC; (c) S.-T. Mak, W.-T. Wong, V. W.-W. Yam, T.-F. Lai and C.-M. Che, J. Chem. Soc., Dalton Trans., 1991, 1915 RSC; (d) C.-M. Che, W.-H. Leung, C.-K. Li, H. Y. Cheng and S.-M. Peng, Inorg. Chim. Acta, 1992, 196, 43 CrossRef CAS.
  7. D. Marcos, R. Martinez-Manez, J. V. Folgado, A. Beltran-Porter and D. Beltran-Porter, Inorg. Chim. Acta, 1989, 159, 11 CrossRef CAS; J. V. Folgado, E. Martinez-Tamayo, A. Beltran-Porter and D. Beltran-Porter, Polyhedron, 1989, 8, 1077 CrossRef CAS; S. Wocadlo, W. Massa and J.-V. Folgado, Inorg. Chim. Acta, 1993, 207, 199 CrossRef CAS.
  8. W. Nam, R. Ho and J. S. Valentine, J. Am. Chem. Soc., 1991, 113, 7052 CrossRef CAS; Y. Yang, F. Diederich and J. S. Valentine, J. Am. Chem. Soc., 1991, 113, 7195 CrossRef CAS.
  9. F. A. Chavez, C. V. Nguyen, M. M. Olmstead and P. K. Mascharak, Inorg. Chem., 1996, 35, 1410 CrossRef CAS and refs. therein.
  10. W.-H. Leung, T. S. M. Hun, K.-N. Hui, I. D. Williams and D. Vanderveer, Polyhedron, 1996, 15, 421 CrossRef CAS.
  11. D. F. Evans, J. Chem. Soc., 1959, 2003 RSC.
  12. C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203 CAS.
  13. N. Gupta, S. Mukerjee, S. Mahapatra, M. Ray and R. Mukherjee, Inorg. Chem., 1992, 31, 139 CrossRef CAS.
  14. S. R. Hall, H. D. Flack and J. M. Stewart(Editors), The XTAL 3.2 Reference Manual, Universities of Western Australia, Geneva and Maryland, 1992 Search PubMed.
  15. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2nd edn., Wiley, New York, 1970, p. 228 Search PubMed.
  16. W. J. Geary, Coord. Chem. Rev., 1971, 7, 81 CrossRef CAS.
  17. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349 RSC.
  18. T. Kawamoto, O. Prakash, R. Ostrander, A. L. Rheingold and A. S. Borovik, Inorg. Chem., 1995, 34, 4294 CrossRef CAS; T. Kawamoto, B. S. Hammes, B. Haggerty, G. P. A. Yap, L. Rheingold and A. S. Borovik, J. Am. Chem. Soc., 1996, 118, 285 CrossRef CAS; T. Kawamoto, B. S. Hammes, R. Ostrander, A. L. Rheingold and A. S. Borovik, Inorg. Chem., 1998, 37, 3424 CrossRef CAS.
  19. M. Ciampolini, N. Nardi and G. P. Speroni, Coord. Chem. Rev., 1966, 1, 222 CrossRef CAS; M. Ciampolini, Struct. Bonding (Berlin), 1969, 6, 52 CAS; R. Morassi, I. Bertini and L. Sacconi, Coord. Chem. Rev., 1973, 11, 343 CrossRef CAS; L. Banci, A. Bencini, C. Benelli, D. Gatteschi and C. Zanchini, Struct. Bonding (Berlin), 1982, 52, 37 CAS.
  20. (a) M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 41 CrossRef CAS; (b) M. Ciampolini and G. P. Speroni, Inorg. Chem., 1966, 5, 45 CrossRef CAS; (c) L. Sacconi, R. Morassi and S. Midollini, J. Chem. Soc. A, 1968, 1510 RSC; (d) M. Ciampolini and I. Bertini, J. Chem. Soc. A, 1968, 2241 RSC; (e) W. Byers, A. B. P. Lever and R. V. Parish, Inorg. Chem., 1968, 7, 1835 CrossRef CAS; (f) I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava, Inorg. Chem., 1975, 14, 1639 CrossRef CAS; (g) F. Mani and G. Scapacci, Inorg. Chim. Acta, 1980, 38, 151 CrossRef CAS; (h) D. V. Bautista and L. K. Thompson, Inorg. Chim. Acta, 1980, 42, 203 CrossRef CAS; (i) F. Mani and C. Mealli, Inorg. Chim. Acta, 1982, 63, 97 CrossRef CAS.
  21. P. Planinic, D. Matcovic-Calogovic and H. Meider, J. Chem. Soc., Dalton Trans., 1997, 3445 RSC.
  22. B. J. Hathaway, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987 vol. 5, pp. 533–594 and refs. therein Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.