Synthesis and characterization of dinuclear complexes containing the FeIII–F[hair space][hair space]· · ·[hair space][hair space](H2O)MII motif

(Note: The full text of this document is currently only available in the PDF Version )

Morten Ghiladi, Kenneth B. Jensen, Jianzhong Jiang, Christine J. McKenzie, Steen Mørup, Inger Søtofte and Jens Ulstrup


Abstract

The dinucleating phenolate-hinged ligand 4-tert-butyl-2,6-bis[bis(2-pyridylmethyl)aminomethyl]phenolate (bpbp) has been used to prepare a series of FeIIIMII complexes containing independent species at the exogenous binding sites. These sites are occupied by fluoride and water ligands and show the general formulation [(bpbp)Fe(F)2M(H2O)n][BF4]2, M = Zn or Cu, n = 1; M = Co or Fe, n = 2. Two terminal fluoride ions are bound to the iron(III) ion and one or two water ligands to the adjacent divalent metal ion. The fluoride ligands are derived from the hydrolysis of tetrafluoroborate. In the crystal structure of [(bpbp)Fe(F)2Cu(H2O)][BF4]2·4H2O. The copper(II) and iron(III) atoms are linked asymmetrically by the phenolic oxygen atom hinge of bpbp with Cu–Ophenolato 2.270(2) and Fe–Ophenolato 2.041(2) Å with a Cu[hair space][hair space]· · ·[hair space][hair space]Fe distance of 3.828(1) Å. The two terminal fluoride ions are bound to the Fe atom (Fe–F 1.818(2), 1.902(2) Å) and one of them is strongly hydrogen bonded to the water molecule on the adjacent Cu atom (F–H[hair space][hair space]· · ·[hair space][hair space]O 2.653(4) Å). The metal ions in the aquafluoride complexes [(bpbp)Fe(F)2M(H2O)2][BF4]2, M = Fe or Co, are weakly antiferromagnetically coupled (J = –8 and –10 cm–1 respectively) and in [(bpbp)Fe(F)2Cu(H2O)][BF4]2 are weakly ferromagnetically coupled (J = 2 cm–1). The spectroscopic, electrochemical and magnetic properties of these complexes are compared to those of an analogous series of complexes containing two acetate bridging groups in the exogenous site. Electrochemical results indicate that the iron(III) ions in the bis-fluoride complexes are stabilized by about 300 mV towards reduction compared to the bis-µ-acetate complexes. The crystal structure of one bis-µ-acetate complex, [Fe2(bpbp)(CH3CO2)2][BF4]2, shows the expected arrangement; the iron-(II) and -(III) atoms are triply bridged by the phenolic oxygen atom of bpbp and two µ-acetate groups with FeII–Ophenolato 2.088(4) and FeIII–Ophenolato 1.951(5) Å and an Fe[hair space][hair space]· · ·[hair space][hair space]Fe distance of 3.380(2) Å. The crystal structure at 120 K indicates that the iron atoms are valence trapped and in accordance with this Mössbauer measurements between 80 and 200 K show clearly distinguishable iron-(II) and -(III) components. The Mössbauer spectra of [(bpbp)Fe(F)2Cu(H2O)][BF4]2·4H2O are influenced by paramagnetic relaxation effects with relaxation times of the order of 1 ns. The relaxation time increases when a magnetic field is applied. This effect can be explained by a model for cross-relaxation in conjunction with the crystal symmetry of the compound.


References

  1. A. Hazell, C. J. McKenzie, B. Moubaraki and K. S. Murray, Acta Chem. Scand., 1997, 51, 470 CAS.
  2. M. Ghiladi, C. J. McKenzie, A. Meier, A. K. Powell, J. Ulstrup and S. Wocadlo, J. Chem Soc., Dalton Trans., 1997, 4011 RSC.
  3. (a) M. Suzuki, M. Mikuriya, S. Murata, A. Uehara and H. Oshio, Bull. Soc. Chem. Jpn., 1987, 60, 4305 CAS; (b) A. S. Borovik and L. Que, Jr., J. Am. Chem. Soc., 1988, 110, 2345 CrossRef CAS; (c) H. Diril, H.-R. Chang, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, D. N. Hendrickson and S. S. Isied, J. Am. Chem. Soc., 1988, 110, 625 CrossRef CAS; (d) R. M. Buchanan, K. J. Oberhausen and J. F. Richardson, Inorg. Chem., 1988, 27, 971 CrossRef CAS; (e) H. Diril, H.-R. Chang, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, S. S. Isied and D. N. Hendrickson, J. Am. Chem. Soc., 1989, 111, 5102 CrossRef CAS; (f) A. S. Borovik, V. Papaefthymiou, L. F. Taylor, O. P. Anderson and L. Que, Jr., J. Am. Chem. Soc., 1989, 111, 6183 CrossRef CAS; (g) T. R. Holman, C. Juarez-Garcia, M. P. Hendrich, L. Que, Jr. and E. Münck, J. Am. Chem. Soc., 1990, 112, 7611 CrossRef CAS; (h) M. S. Mashuta, R. J. Webb, J. K. McCusker, E. A. Schmitt, K. J. Oberhausen, J. F. Richardson, R. M. Buchanan and D. N. Hendrickson, J. Am. Chem. Soc., 1992, 114, 3815 CrossRef CAS; (i) W. Kanda, W. Moneta, M. Bardet, E. Bernard, N. Debaecker, J. Laugier, A. Boussekou, S. Chardon-Noblat and J.-M. Latour, Angew. Chem., Int. Ed. Engl., 1995, 34, 588 CrossRef CAS; (j) A. Neves, M. A. de Brito, I. Vencato, V. Drago, K. Griesar and W. Haase, Inorg. Chem., 1996, 35, 2360 CrossRef CAS.
  4. K. Anzai, K. Hatano, Y. J. Lee and W. R. Scheidt, Inorg. Chem., 1981, 20, 2337 CrossRef CAS; W. R. Scheidt, Y. J. Lee, S. Tamai and K. Hatano, J. Am. Chem. Soc., 1983, 105, 778 CrossRef CAS; S. C. Lee and R. H. Holm, Inorg. Chem., 1993, 32, 4745 CrossRef CAS; S. Christie, S. Subramanian, L. Wang and M. J. Zaworotko, Inorg. Chem., 1993, 32, 5415 CrossRef CAS.
  5. P. Glavic, J. Slivnik and A. Bole, J. Inorg. Nucl. Chem., 1979, 41, 248 CrossRef; K. C. Patil and E. A. Secco, Can. J. Chem., 1972, 50, 567 CAS.
  6. T. R. Musgrave and T. S. Linn, J. Coord. Chem., 1973, 2, 323 CAS.
  7. J. Reedijk, J. C. Jansen, H. van Koningsveld and C. G. van Kralingen, Inorg. Chem., 1978, 17, 1990 CrossRef CAS; R. W. M. ten Hoedt, J. Reedijk and G. C. Verschoor, Recl. Trav. Chim. Pays-Bas, 1981, 100, 400 CAS; W. C. Velthuizen, J. G. Haasnoot, A. J. Kinneging, F. J. Rietmeijer and J. Reedijk, J. Chem. Soc., Chem. Commun., 1983, 1366 RSC; F. J. Rietmeijer, R. A. G. de Graa and J. Reedijk, Inorg. Chem., 1984, 23, 151 CrossRef CAS; J. Verbiest, J. A. C. van Ooijen and J. Reedijk, J. Inorg. Nucl. Chem., 1980, 42, 971 CrossRef CAS; J. Reedijk, Comments Inorg. Chem., 1982, 1, 379 CrossRef CAS; W. Vreugdenhil, P. J. M. W. L. Birker, R. W. M. ten Hoedt, G. C. Verschoor and J. Reedijk, J. Chem. Soc., Dalton Trans., 1984, 429 RSC; J. Reedijk and R. W. M. ten Hoedt, Recl. Trav. Chim. Pays-Bas, 1982, 101, 49 CAS.
  8. J. B. Vincent, M. W. Crowder and B. A. Averill, Biochemistry, 1991, 30, 3025 CrossRef CAS; M. W. Crowder, J. B. Vincent and B. A. Averill, Biochemistry, 1992, 31, 9603 CrossRef CAS.
  9. T. Klabunde, N. Sträter, R. Frölich, H. Witzel and B. Krebs, J. Mol. Biol., 1996, 259, 737 CrossRef CAS.
  10. E. Pedersen, Acta Chem. Scand., 1972, 26, 333 CAS; J. Josephsen and E. Pedersen, Inorg. Chem., 1977, 16, 2534 CrossRef CAS.
  11. C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203 CAS.
  12. J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105 CrossRef CAS.
  13. Siemans SMART and SAINT, Area-Detector Control and Integration Software, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1995; G. M. Sheldrick, SADABS, Program for Absorption Correction, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1996.
  14. G. M. Sheldrick, SHELXTL 95, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1995.
  15. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C-34.
  16. A. Hazell, K. B. Jensen, C. J. McKenzie and H. Toftlund, Inorg. Chem., 1994, 33, 3127 CrossRef CAS.
  17. Y. Maeda, Y. Tanigawa, N. Matsumoto, H. Oshio, M. Suzuki and Y. Takashima, Bull. Soc. Chem. Soc. Jpn., 1994, 67, 125 Search PubMed; T. Manago, S. Hayami, H. Oshio, S. Osaki, H. Hasuyama, R. H. Herber and Y. Maeda, J. Chem. Soc., Dalton Trans., 1999, 1001 RSC.
  18. S. Mørup, Mössbauer Effect Methodology, eds. I. J. Gruverman C. W. Seidel and D. K. Dieterly, Plenum, New York, 1974, vol. 9, p. 127 Search PubMed; Paramagnetic and Superparamagnetic Relaxation Phenomena Studied by Mössbauer Spectroscopy, Polyteknisk Forlag, Lyngby, 1981 Search PubMed.
  19. S. Mørup and N. Thrane, Chem. Phys. Lett., 1973, 21, 363 CrossRef CAS; S. Mørup, J. Phys. Chem. Solids, 1974, 35, 1159; S. Mørup, F. Sontheimer, G. Ritter and R. Zimmermann, J. Phys. Chem. Solids, 1978, 39, 123 CrossRef CAS.
  20. C. Belle, I. Gautier-Luneau, J.-L. Pierre, C. Scheer and E. Saint-Aman, Inorg. Chem., 1996, 35, 3706 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.