Phenyl tris(3-tert-butylpyrazolyl)borato complexes of lithium and thallium, [PhTpBut]M (M = Li, Tl): a novel structure for a monomeric tris(pyrazolyl)boratothallium complex and a study of its stereochemical nonrigidity by 1H and 205Tl NMR spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Jennifer L. Kisko, Tony Hascall, Clare Kimblin and Gerard Parkin


Abstract

The syntheses and structures of the phenyl substituted tris(3-tert-butylpyrazolyl)borato complexes, [PhTpBut]M (M = Li, Tl, H), are reported. In contrast to other monomeric [TpRR′]Tl derivatives, which exhibit symmetric tridentate coordination of the tris(pyrazolyl)borate ligand, [PhTpBut]Tl exhibits an unprecedented structure. Specifically, one of the tert-butylpyrazolyl groups is rotated by ca. 90° and the Tl interacts with the nitrogen attached directly to the boron via a p-orbital component of the aromatic π-system of the pyrazolyl nucleus. [PhTpBut]Tl is stereochemically nonrigid on the NMR spectroscopic timescale in solution at room temperature, but cooling to ca. –80 °C slows down the dynamic processes sufficiently to allow “axial” and “equatorial” isomers to be identified, with the descriptors denoting the position of the pyrazolyl group relative to the boat configuration of the six-membered [BN4Tl] ring.


References

  1. For recent reviews (a) S. Trofimenko, Chem. Rev., 1993, 93, 943 CrossRef CAS; (b) G. Parkin, Adv. Inorg. Chem., 1995, 42, 291 CrossRef CAS; (c) N. Kitajima and W. B. Tolman, Prog. Inorg. Chem., 1995, 43, 419 CAS; (d) I. Santos and N. Marques, New. J. Chem., 1995, 19, 551 Search PubMed; (e) D. L. Reger, Coord. Chem. Rev., 1996, 147, 571 CrossRef CAS; (f) M. Etienne, Coord. Chem. Rev., 1997, 156, 201 CrossRef CAS; (g) P. K. Byers, A. J. Canty and R. T. Honeyman, Adv. Organomet. Chem., 1992, 34, 1 CAS.
  2. For reviews of Tl[TpRR′] complexes, see: (a) C. Janiak, Main Group Met. Chem., 1998, 21, 33 Search PubMed; (b) C. Janiak, Coord. Chem. Rev., 1997, 163, 107 CrossRef CAS.
  3. The abbreviations adopted here for tris(pyrazolyl)hydroborato ligands are based on those described by Trofimenko [ref. 1(a)]. Thus, the tris(pyrazolyl)hydroborato ligands are represented by the abbreviation Tp, with the 3- and 5-alkyl substituents listed respectively as superscripts. If the fourth substituent on boron is anything other than hydrogen, the substituent is listed as a prefix, e.g., [pzTp] and [RTp].
  4. See, for example: J. L. Kisko, T. Hascall and G. Parkin, J. Am. Chem. Soc., 1998, 120, 10561 Search PubMed.
  5. S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 6288 CrossRef CAS.
  6. K. Nidenzu and S. Trofimenko, Top. Curr. Chem., 1986, 131, 1 CAS.
  7. Na[RTp](R = Pri,a Bun,b Ph,b,cp-C6H4Brc) have been prepared by reaction of R B(OH)2 with Napz in the presence of pzH (a) D. L. Reger and M. E. Tarquini, Inorg. Chem., 1982, 21, 840 CrossRef CAS; (b) ref. 5; (c) D. L. White and J. W. Faller, J. Am. Chem. Soc., 1982, 104, 1548 CrossRef CAS.
  8. [PhTp]Li has been prepared by reaction of Li[PhBH3] with pyrazole. See: F. A. Cotton, C. A. Murillo and B. R. Stults, Inorg. Chim. Acta, 1977, 22, 75 Search PubMed.
  9. [pzH2][PhTp] was obtained by the reaction of PhBCl2 with excess pyrazole. See ref. 5.
  10. The ferrocenyl [Fc =(C5H4)(C5H5)Fe] derivative, [FcTp]H has been obtained by reaction of FcBBr2 with pzH in the presence of Et3N. Subsequent reaction of [FcTp]H with TlOEt gives the thallium complex Tl[FcTp] F. Jäkle, K. Polborn and M. Wagner, Chem. Ber., 1996, 129, 603 Search PubMed.
  11. U. E. Bucher, T. F. Fässler, M. Hunziker, R. Nesper, H. Rüegger and L. M. Venanzi, Gazz. Chim. Ital., 1995, 125, 181 CAS.
  12. For example, terminal alkyl, hydride, hydroxide and chalcogenide moieties have been stabilized with such ligation. See, for example, ref. 1(b) and (a) M. C. Kuchta and G. Parkin, J. Am. Chem. Soc., 1995, 117, 12651 CrossRef CAS; (b) M. C. Kuchta and G. Parkin, Inorg. Chem., 1997, 36, 2492 CrossRef CAS; (c) M. C. Kuchta and G. Parkin, J. Chem. Soc., Dalton Trans., 1998, 2279 RSC.
  13. B. Singaram, T. E. Cole and H. C. Brown, Organometallics, 1984, 3, 774 CrossRef CAS.
  14. If the reaction is carried out in benzene solvent at room temperature, the phenylbis(3-tert-butylpyrazolyl)borato species [Ph(H)BpBut]Li(ButpzH) may be isolated. J. L. Kisko and G. Parkin, unpublished work.
  15. (a) S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170 CrossRef CAS; (b) R. A. Kresinski, J. Chem. Soc., Dalton Trans., 1999, 401 RSC.
  16. C. López, R. M. Claramunt, C. Foces-Foces, F. H. Cano and J. Elguero, Rev. Roum. Chim., 1994, 9, 795 Search PubMed.
  17. Other protonated [TpRR′]H derivatives have also been prepared by this method. See: J. Blackwell, C. Lehr, Y. Sun, W. E. Piers, S. D. Pearce-Batchilder, M. J. Zaworotko and V. G. Young, Jr., Can J. Chem., 1997, 75, 702 Search PubMed and footnote 5 therein.
  18. For structures of other alkali metal [TpRR′]M derivatives, see, for example: (a) C. M. Dowling, D. Leslie, M. H. Chisholm and G. Parkin, Main Group Chem., 1995, 1, 29 Search PubMed; (b) C. Lopez, R. M. Claramunt, D. Sanz, C. Foces Foces, F. H. Cano, E. Faure, E. Cayon and J. Elguero, Inorg. Chim. Acta, 1990, 176, 195 CrossRef CAS; (c) G. G. Lobbia, P. Cecchi, R. Spagna, M. Colapietro, A. Pifferi and C. Pettinari, J. Organomet. Chem., 1995, 485, 45 CrossRef CAS; (d) K. Weis and H. Vahrenkamp, Inorg. Chem., 1997, 36, 5589 CrossRef CAS; (e) H. V. R. Dias and H.-J. Kim, Organometallics, 1996, 15, 5374 CrossRef CAS; (f) H. V. R. Dias, W. C. Jin, H. J. Kim and H.-L. Lu, Inorg. Chem., 1996, 35, 2317 CrossRef; (g) H. V. R. Dias, H.-L. Lu, R. E. Ratcliff and S. G. Bott, Inorg. Chem., 1995, 34, 1975 CrossRef CAS.
  19. Although three coordination of lithium is less common than its ubiquitous tetrahedral coordination, it is nevertheless well precedented. For example, ca. 20% of the lithium complexes listed in the Cambridge Structural Database have a coordination number of three for lithium.
  20. CSD Version 5.16, 1999, 3D Search and Research Using the Cambridge Structural Database, F. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, 8, 1, 31–37 Search PubMed.
  21. D. L. Reger, J. E. Collins, M. A. Matthews, A. L. Rheingold, L. M. Liable-Sands and I. A. Guzei, Inorg. Chem., 1997, 36, 6266 CrossRef CAS.
  22. D. C. Bradley, M. B. Hursthouse, J. Newton and N. P. C. Walker, J. Chem. Soc., Chem. Commun., 1984, 188 RSC.
  23. For a compilation of data, see: R. Han, P. Ghosh, P. J. Desrosiers, S. Trofimenko and G. Parkin, J. Chem. Soc., Dalton Trans., 1997, 3713 Search PubMed.
  24. A. H. Cowley, R. L. Geerts, C. M. Nunn and S. Trofimenko, J. Organomet. Chem., 1989, 365, 19 CrossRef CAS.
  25. For other examples in which intraligand interactions influence the binding mode of poly(pyrazolyl)borate complexes, see: (a) Y. Sohrin, H. Kokusen and M. Matsui, Inorg. Chem., 1995, 34, 3928 CrossRef CAS; (b) D. L. Reger, M. F. Huff, A. L. Rheingold and B. S. Haggerty, Inorg. Chem., 1992, 114, 579 CAS; (c) F. A. Cotton, B. A. Frenz and C. A. Murillo, J. Am. Chem. Soc., 1975, 97, 2118 CrossRef CAS.
  26. (a) C. Dowling, P. Ghosh and G. Parkin, Polyhedron, 1997, 16, 3469 CrossRef CAS; (b) T. Fillebeen, T. Hascall and G. Parkin, Inorg. Chem., 1997, 36, 3787 CrossRef CAS; (c) P. Ghosh, T. Hascall, C. Dowling and G. Parkin, J. Chem. Soc., Dalton Trans., 1998, 3355 RSC.
  27. For example, only 7% of the structurally characterized lithium complexes listed in the Cambridge Structural Database are two coordinate.
  28. Furthermore, it should be noted that the closest Tl ⋯ Tl separation in [PhTpBut]Tl is 6.68 Å, so that there is also no weak Tl ⋯ Tl interaction of the type that has been suggested for other [TpRR′]Tl complexes. See, for example: (a) G. Ferguson, M. C. Jennings, F. J. Lalor and C. Shanahan, Acta. Crystallogr., Sect. C, 1991, 47, 2079 CrossRef; (b) A. L. Rheingold, L. M. Liable-Sands and S. Trofimenko, J. Chem. Soc., Chem. Commun., 1997, 1691 RSC; (c) C. Janiak, S. Temizdemir and T. G. Scharmann, Z. Anorg. Allg. Chem., 1998, 624, 755 CrossRef CAS.
  29. The 2:3 ratio is comparable to the ratio of areas of the two 205Tl NMR spectroscopic signals (2:2.6 at –70 °C). In view of the potentially different relaxation times for the different thallium nuclei, the integral ratio is not expected to be an accurate measure of their relative concentrations.
  30. The 2:1 ratio of pyrazolyl groups assumes that either the chemical shifts of the diasterotopic pyrazolyl groups are coincidentally the same, or a mechanism exists for their facile interconversion. Alternatively, B2:1 could correspond to the equatorial isomer of Scenario I.
  31. U. E. Bucher, A. Currao, R. Nesper, H. Rüegger, L. M. Venanzi and E. Younger, Inorg. Chem., 1995, 34, 66 CrossRef CAS.
  32. W. D. Jones and E. T. Hessell, Inorg. Chem., 1991, 30, 778 CrossRef CAS.
  33. (a) J. P. McNally, V. S. Leong and N. J. Cooper, in Experimental Organometallic Chemistry, ed. A. L. Wayda and M. Y. Darensbourg, American Chemical Society, Washington, DC, 1987, ch. 2, pp. 6–23 Search PubMed; (b) B. J. Burger and J. E. Bercaw, in Experimental Organometallic Chemistry, eds. A. L. Wayda and M. Y. Darensbourg, American Chemical Society, Washington, DC, 1987, ch. 4, pp. 79–98 Search PubMed; (c) D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-Sensitive Compounds, Wiley-Interscience, New York, 2nd edn., 1986 Search PubMed.
  34. J. J. Dechter and J. I. Zink, J. Am. Chem. Soc., 1975, 97, 2937 CrossRef CAS.
  35. Specifically, the resonance frequencies of three solutions of Tl(NO3) in H2O (1.0, 0.5 and 0.25 M) were extrapolated to zero concentration.
  36. G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from DiVraction Data, University of Göttingen, 1981.
Click here to see how this site uses Cookies. View our privacy policy here.