Potentiometric and spectroscopic evidence for co-ordination of dimethyltin(IV) to phosphate groups of DNA fragments and related ligands

(Note: The full text of this document is currently only available in the PDF Version )

Attila Jancsó, László Nagy, Erlend Moldrheim and Einar Sletten


Abstract

The co-ordination of dimethyltin(IV) to 5′-GMP, 5′-ATP and 5′-d(CGCGCG)2 and to their sugar constituents (D-ribose and 2-deoxy-D-ribose) was investigated in aqueous solution by means of potentiometric titration and 1H and 31P NMR spectroscopic methods. The results showed that in acidic media the phosphate groups can provide suitable sites for metal ion co-ordination, while the hydroxy groups of the sugars or the sugar moieties of the two nucleotides play a role in this process at higher pH. The base moieties of 5′-GMP and 5′-ATP were not co-ordinated to dimethyltin(IV). The stability constants of the complexes formed in the above systems were determined by pH-metric titration. The data revealed a stronger co-ordination ability of the triphosphate as compared with that of the monophosphate. The comparison of the stability constants of the D-ribose and 2-deoxy-D-ribose complexes showed that more stable species were formed when neighbouring alcoholic hydroxy groups were available for co-ordination. The observed chemical shift changes of the 31P NMR resonances, as compared with those measured for the metal-free systems, demonstrated that the phosphate groups of the DNA fragment 5′-d(CGCGCG)2 chains act as binding sites for dimethyltin(IV) between pH 4.5 and 7. The 1- and 2-D 1H NMR spectra indicated that the base and sugar moieties do not participate in the co-ordination process under these conditions.


References

  1. A. K. Saxena and F. Huber, Coord. Chem. Rev., 1989, 95, 109 CrossRef CAS; M. Gielen, Main Group Metal Chem, 1994, 17, 1 Search PubMed.
  2. A. J. Crowe, P. J. Smith and G. Atassi, Chem. Biol. Interact., 1980, 32, 171 CrossRef CAS; R. Barbieri, L. Pellerito, G. Ruisi, M. T. Lo Guidice, F. Huber and G. Attasi, Inorg. Chim. Acta, 1982, 66, 139 CrossRef; M. Takahashi, F. Furukawa, T. Kobuko, Y. Kurata and Y. Hayashi, Cancer Lett., 1983, 20, 271 CAS; G. Ruisi, A. Silvestri, M. T. Lo Guidice, R. Barbieri, G. Attasi, F. Huber, K. Gratz and L. Lamartina, J. Inorg. Biochem., 1985, 25, 229 CrossRef CAS.
  3. A. J. Crowe, P. J. Smith, C. J. Cardin, H. E. Parge and F. E. Smith, Cancer Lett., 1984, 24, 45 CAS.
  4. W. Stillwell and H. C. Winter, Biochem. Biophys. Res. Commun., 1974, 56, 617 CAS.
  5. R. Barbieri, A. Silvestri, A. M. Giuliani, V. Piro, F. Di Simone and G. Madonia, J. Chem. Soc., Dalton Trans., 1992, 585 RSC; R. Barbieri, G. Ruisi, A. Silvestri, A. M. Giuliani, A. Barbieri, G. Spina, F. Pieralli and F. Del Giallo, J. Chem. Soc., Dalton Trans., 1995, 467 RSC; Q. Li, P. Yang, H. Wang and M. Guo, J. Inorg. Biochem., 1996, 64, 181 CrossRef CAS.
  6. (a) G. Arena, R. Cali, A. Contino, N. Loretta, S. Musumeci and R. Purello, J. Chem. Soc., Dalton Trans., 1992, 2039 RSC; (b) R. Barbieri, A. Silvestri and V. Piro, J. Chem. Soc., Dalton Trans., 1990, 3605 RSC; (c) R. Barbieri, G. Alonzo and R. H. Herber, J. Chem. Soc., Dalton Trans., 1987, 789 RSC; (d) C. J. Cardin and A. Roy, Inorg. Chim. Acta, 1985, 107, 57 CrossRef CAS; (e) G. Ruisi, M. T. Lo Guidice and L. Pellerito, Inorg. Chim. Acta, 1984, 93, 161 CrossRef CAS.
  7. L. Nagy, L. Korecz, I. Kiricsi, L. Zsikla and K. Burger, Struct. Chem., 1991, 2, 231 CAS.
  8. K. Burger, L. Nagy, N. Buzás, A. Vértes and H. Mehner, J. Chem. Soc., Dalton Trans., 1993, 2499 RSC; L. Nagy, H. Mehner, A. A. Christy, E. Sletten, F. T. Edelmann and Q. M. Andersen, J. Radioanal. Nucl. Chem., 1988, 227, 89.
  9. A. Vértes, K. Sümegh, E. Kuzmann, K. Burger, L. Nagy, K. Schrantz and N. Buzás, J. Radioanal. Nucl. Chem., 1996, 203, 399 CAS.
  10. N. Buzás, M. A. Pujar, L. Nagy, E. Kuzmann, A. Vértes and H. Mehner, J. Radioanal. Nucl. Chem., Lett., 1995, 189, 237 CAS.
  11. N. Buzás, B. Gyurcsik, L. Nagy, X.-x. Zhang, L. Korecz and K. Burger, Inorg. Chim. Acta, 1994, 218, 65 CrossRef CAS.
  12. L. Nagy, B. Gyurcsik, K. Burger, S. Yamashita, T. Yamaguchi, H. Wakita and M. Nomura, Inorg. Chim. Acta, 1995, 230, 105 CrossRef CAS.
  13. B. Gyurcsik, N. Buzás, T. Gajda, L. Nagy, E. Kuzmann, A. Vértes and K. Burger, Z. Naturforsch., Teil B, 1995, 5, 515.
  14. N. Buzás, T. Gajda, E. Kuzmann, L. Nagy, A. Vértes and K. Burger, Main Group Met. Chem., 1995, 18, 633 Search PubMed.
  15. N. Buzás, T. Gajda, L. Nagy, E. Kuzmann, A. Vértes and K. Burger, Inorg. Chim. Acta, 1998, 274, 167 CrossRef CAS.
  16. M. Piotto, V. Saudek and V. Sklenar, J. Biomol. NMR 2, 1992, 661 Search PubMed; V. Sklenar, M. Piotto, R. Leppik and V. Saude, J. Magn. Reson., Ser. A, 1993, 102, 241 CrossRef CAS.
  17. R. S. Tobias and M. Yasuda, Can. J. Chem., 1964, 42, 781 CAS.
  18. G. Arena, R. Purrello, E. Rizzarelli, A. Gianguzza and L. Pellerito, J. Chem. Soc., Dalton Trans., 1989, 773 RSC.
  19. T. Natsume, S.-i. Aizawa, K. Hatano and S. Funahashi, J. Chem. Soc., Dalton Trans., 1994, 2749 RSC.
  20. (a) K. Burger and L. Nagy, in Biocoordination Chemistry; Metal Complexes of Carbohydrates and Sugar-type Ligands, ed. K. Burger, Ellis Horwood, Chichester, 1990, ch. VI, p. 236 Search PubMed; (b) R. M. Izatt, J. H. Rytting, L. D. Hansen and J. J. Christensen, J. Am. Chem. Soc., 1966, 88, 2641 CrossRef CAS.
  21. C. P. Rao, K. Geetha and M. S. S. Raghavan, Biometals, 1994, 7, 25 CAS; K. Geetha, M. S. Ranghava, S. K. Kulshreshtha, R. Sasikala and C. P. Rao, Carbohydr. Res., 1995, 271, 163 CrossRef CAS; R. P. Bandwar, M. Giralt, J. Hidalgo and C. P. Rao, Carbohydr. Res., 1996, 284, 73 CrossRef CAS; R. P. Bandwar and C. P. Rao, Carbohydr. Res., 1994, 264, 227; P. Klüfers and J. Schuhmacher, Angew. Chem., Int. Ed. Engl., 1994, 33, 1742, 1863; R. Fusch, N. Habermann and P. Klüfers, Angew Chem., Int. Ed. Engl., 1993, 32, 852 CrossRef; J. Burger and P. Klüfers, Z. Anorg. Allg. Chem., 1996, 622, 1740 CrossRef CAS; L. Nagy, T. Yamaguci, T. Páli, M. Nomura and H. Ohtaki, ACH, Models in Chemistry, 1998, 135, 129 CAS.
  22. L. Pellerito, G. Ruisi, R. Barbieri and M. T. Lo Giudice, Inorg. Chim. Acta, 1977, 21, L33 CrossRef CAS.
  23. See for example, H. Sigel, Chem. Soc. Rev., 1993, 22, 255 Search PubMed; H. Sigel and B. Song, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, New York, 1966, vol. 32, p. 136 RSC.
  24. (a) H. Sigel, S. S. Massoud and N. A. Corfu, J. Am. Chem. Soc., 1994, 116, 1958; (b) H. Sigel, R. Tribolet, R. Malini-Balakrishnan and B. R. Martin, Inorg. Chem., 1987, 26, 2149 CrossRef CAS.
  25. Y. J. Chao and D. R. Kearns, J. Am. Chem. Soc., 1977, 99, 6425 CrossRef CAS.
  26. T. Yamaguchi, L. Nagy, M. Nomura and H. Ohtaki, Photon Factory Activity Report, 1989, 7, 82 Search PubMed; L. Palladino, S. Della Longa, A. Reale, M. Belli, A. Scafati, G. Onari and A. Santucci, J. Chem. Phys., 1993, 98, 2720 CrossRef CAS.
  27. W. S. Sheldrick, Acta Crystallogr., Sect. B, 1981, 37, 1820 CrossRef.
  28. P. Klüfers and P. Mayer, Z. Anorg. Allg. Chem., 1997, 623, 1496 CAS.
  29. R. D. Izatt, J. J. Christensen and J. H. Rytting, Chem. Rev., 1971, 71, 5 CrossRef.
  30. (a) K. Atkári, T. Kiss, R. Bertani and B. R. Martin, Inorg. Chem., 1996, 35, 7089 CrossRef CAS; (b) T. Kiss, I. Sóvágó and B. R. Martin, Inorg. Chem., 1991, 30, 2130 CrossRef CAS.
  31. N. A. Froystein and E. Sletten, Acta Chem. Scand., 1991, 45, 219 CAS; N. A. Froystein, J. T. Davis, B. R. Reid and E. Sletten, Acta Chem. Scand., 1993, 47, 649 CAS.
  32. S. Steinkopf, A. Garoufis, W. Nerdal and E. Sletten, Acta Chem. Scand., 1995, 49, 495 CAS; Q. Xu, R. K. Shoemaker and W. Braunlin, Biophys. J., 1993, 65, 1039 CAS.
  33. W. H. Braunlin, Advances in Biophysical Chemistry, ed. A. C. Bush, Jai Press, New Delhi, 1995, vol. 5, p. 89 Search PubMed.
  34. G. Lamm and G. R. Pack, Proc. Natl. Acad. Sci. U.S.A., 1990, 87, 9033 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.