Formation of nitrous oxide from the reaction of peroxynitrite with sodium azide

(Note: The full text of this document is currently only available in the PDF Version )

Sarojini Padmaja, Van Au and Stephen A. Madison


Abstract

The reaction of peroxynitrite (oxoperoxonitrate) with azide ion (N3), the residual starting material in the peroxynitrite preparation by the ozonolysis of azide, was investigated in phosphate and carbonate buffers. The observed rate constants (kobs) for the decay of peroxynitrite at pH 4.5 in the presence of azide up to 30 mM are within experimental error identical to the self decomposition rate of peroxynitrite indicating that the reaction is zero order in azide concentration. However, when the concentration of azide is increased beyond 40 mM a slight increase in kobs is noticed. From the dependence of kobs on the concentration of azide the second-order rate constants for the reaction of peroxynitrite with azide are determined to be 3.5 and 1.2 M–1 s–1 at pH 4.5 and 7.4 respectively. In the presence of added bicarbonate the reaction between peroxynitrite and azide is zero order in azide concentration. The reaction of peroxynitrite with azide led to the production of nitrous oxide (N2O) in the absence and presence of bicarbonate as identified by GC-MS analysis of the reaction mixture. At a given pH and peroxynitrite concentration, the yield of N2O increased linearly with an increase in the concentration of azide up to 100 mM and attained saturation beyond that. Under identical conditions, the yield of N2O obtained in the absence of bicarbonate is 50% more compared to that obtained in the presence of bicarbonate. Based on kinetics and product studies, it is proposed that the reaction of peroxynitrite with azide involves a one-electron oxidation of N3 to azide radical (N3˙) by the activated form of HOONO (HOONO*). Also that the combination between N3˙ and nitrogen dioxide (NO2˙) is rapid and leads to nitryl azide (N3NO2) as a transient intermediate and precursor for nitrous oxide (N2O). In the presence of bicarbonate the peroxynitrite–carbon dioxide adduct (ONOOCO2) or the carbonate radical anion (CO3˙–) is proposed as a one-electron oxidant towards N3 forming N3˙. The proposed mechanism for N2O formation from nitryl azide is supported by high level ab initio calculations.


References

  1. R. E. Huie and S. Padmaja, Free Rad. Res. Commun., 1993, 18, 195 Search PubMed.
  2. S. Goldstein and G. Czapski, Free Rad. Biol. Med., 1995, 19, 505 CrossRef CAS.
  3. R. Kissner, T. Nauser, P. Bugnon, P. G. Lye and W. H. Koppenol, Chem. Res. Toxicol., 1997, 10, 1288 CrossRef CAS.
  4. P. A. King, V. E. Anderson, J. O. Edwards, G. Gustafson, R. C. Plumb and J. W. Suggs, J. Am. Chem. Soc., 1992, 114, 5430 CrossRef CAS.
  5. R. Radi, J. S. Beckman, K. M. Bush and B. A. Freeman, J. Biol. Chem., 1991, 288, 481 CAS.
  6. R. Radi, J. S. Beckman, K. M. Bush and B. A. Freeman, J. Biol. Chem., 1991, 266, 4244 CAS.
  7. S. Padmaja, G. L. Squadrito, J.-N. Lemercier, R. Cueto and W. A. Pryor, Free Rad. Biol. Med., 1997, 23, 917 CrossRef CAS.
  8. S. Padmaja, G. L. Squadrito, J.-N. Lemercier, R. Cueto and W. A. Pryor, Free Rad. Biol. Med., 1996, 21, 317 CrossRef CAS.
  9. H. Masumoto, R. Kissner, W. H. Koppenol and H. Sies, FEBS Lett., 1996, 398, 179 CrossRef CAS.
  10. H. Ischiropoulos, L. Zhu, J. Chen, J. H. M. Tsai, J. C. Martin, C. D. Smith and J. S. Beckman, Arch. Biochem. Biophys., 1992, 298, 431 CrossRef CAS.
  11. M. S. Ramezanian, S. Padmaja and W. H. Koppenol, Chem. Res. Toxicol., 1996, 9, 232 CrossRef CAS.
  12. W. A. Pryor and G. L. Squadrito, Am. J. Physiol. (Lung Cell. Mol. Physiol.), 1995, 268, L669 Search PubMed.
  13. S. Goldstein, G. L. Squadrito, W. A. Pryor and G. Czapski, Free Rad. Biol. Med., 1996, 21, 965 CrossRef CAS.
  14. S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle and B. Mayer, J. Biol. Chem., 1997, 272, 3465 CrossRef CAS.
  15. W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos and J. S. Beckman, Chem. Res. Toxicol., 1992, 5, 834 CrossRef CAS.
  16. S. V. Lymar and J. K. Hurst, J. Am. Chem. Soc., 1995, 117, 8867 CrossRef CAS.
  17. A. Denicola, B. A. Freeman, M. Trujillo and R. Radi, Arch. Biochem. Biophys., 1996, 333, 49 CrossRef CAS.
  18. J. K. Hurst and S. V. Lymar, Chem. Res. Toxicol., 1997, 10, 802 CrossRef CAS.
  19. S. V. Lymar, Q. Jiang and J. K. Hurst, Biochemistry, 1996, 35, 7855 CrossRef CAS.
  20. S. V. Lymar and J. K. Hurst, Inorg. Chem., 1998, 37, 294 CrossRef CAS.
  21. S. Goldstein and G. Czapski, Inorg. Chem., 1997, 36, 5113 CrossRef CAS.
  22. R. M. Uppu, G. L. Squadrito, R. Cueto and W. A. Pryor, Methods Enzymol., 1996, 269, 311 CAS.
  23. R. M. Uppu and W. A. Pryor, Anal. Biochem., 1996, 236, 242 CrossRef CAS.
  24. R. A. Pufahl, J. S. Wishnok and M. A. Marletta, Biochemistry, 1995, 34, 1390.
  25. R. J. Singh, N. Hogg and B. Kalyanaraman, Arch. Biochem. Biophys., 1995, 324, 367 CrossRef CAS.
  26. R. F. Weiss, Deep-sea Res., 1970, 17, 721 Search PubMed.
  27. GAUSSIAN 94, E. I. Revision, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-ham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  28. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154 CrossRef.
  29. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1990, 94, 5523 CAS.
  30. G. L. Squadrito, X. Jin and W. A. Pryor, Arch. Biochem. Biophys., 1995, 322, 53 CrossRef CAS.
  31. G. L. Squadrito and W. A. Pryor, Am. J. Physiol., 1995, 268, L699 Search PubMed.
  32. B. Alvarez, H. Rubbo, M. Kirk, S. Barnes, B. A. Freeman and R. Radi, Chem. Res. Toxicol., 1994, 9, 390 CrossRef.
  33. S. Goldstein and G. Czapski, Inorg. Chem., 1995, 34, 4041 CrossRef CAS.
  34. J.-N. Lemercier, G. L. Squadrito and W. A. Pryor, Arch. Biochem. Biophys., 1995, 321, 31 CrossRef CAS.
  35. L. J. Jensen, B. L. Miller, X. Zhang, G. L. Hug and C. Schoneich, J. Am. Chem. Soc., 1997, 119, 4749 CrossRef CAS.
  36. S. Goldstein and G. Czapski, Inorg. Chem., 1996, 35, 7735 CrossRef CAS.
  37. A. Schulz and I. C. Tornieporth-Oetting, Angew. Chem., Int. Ed. Engl., 1993, 32, 1610 CrossRef.
  38. T. M. Klapotke, A. Schulz and I. C. Tornieporth-Oetting, Chem. Ber., 1994, 127, 2181.
  39. M. R. Manaa and C. F. Chabalowski, J. Phys. Chem., 1996, 109, 133.
  40. M. P. Doyle, J. J. Maciejko and S. C. Busman, J. Am. Chem. Soc., 1973, 95, 952 CrossRef CAS.
  41. S. Goldstein and G. Czapski, J. Am. Chem. Soc., 1998, 120, 3458 CrossRef CAS.
  42. R. E. Huie, C. L. Clifton and P. Neta, Radiat. Phys. Chem., 1991, 38, 477 CAS.
  43. R. E. Huie, L. C. T. Shoute and P. Neta, Int. J. Chem. Kinet., 1991, 23, 541 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.