Complexation and removal of trace boron from aqueous solution by an anion exchange resin loaded with chromotropic acid (disodium 2,7-dihydroxynaphthalene-4,5-disulfonate)

(Note: The full text of this document is currently only available in the PDF Version )

Toshishige M. Suzuki, D. A. Pacheco Tanaka, Toshiro Yokoyama, Yoshinobu Miyazaki and Kazuhisa Yoshimura


Abstract

An ion exchanger consisting of disodium 2,7-dihydroxynaphthalene-4,5-disulfonate (chromotropic acid) and strongly basic anion exchange resin has been prepared for the removal of trace boric acid/borate. The reaction of boric acid with chromotropic acid has been examined by 11B, 1H and 13C NMR spectroscopy, and acid–base titration analysis. The NMR study suggests that chromotropic acid preferentially forms a stable bis-chelate type complex (L∶B = 2∶1) in an acidic pH range. The acid–base titration data are consistent with the NMR measurements. Adsorption of boric acid/borate on the resin has been examined with respect to the equilibrium adsorption, kinetics and % extraction of boric acid/borate as a function of pH. The adsorption characteristics have been compared with those of a disodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) loaded resin and a commercially available chelating resin containing N-methylglucamine. Boric acid/borate is strongly retained on the chromotropic acid resin in the acidic region (pH 1.8–4.5), allowing quantitative removal of boron. The removal of trace amounts of boron from aqueous solution has been examined.


References

  1. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York and London, 1977, vol. 3, p. 270 Search PubMed.
  2. R. Kunin, Adv. Chem. Ser., 1973, 123, 139 Search PubMed.
  3. K. Yoshimura, R. Kariya and T. Tarutani, Anal. Chim. Acta, 1979, 109, 115 CrossRef CAS.
  4. S. Yasuda and H. Yamaguchi, Nippon Kagaku Kaishi, 1987, 4, 752.
  5. O. Okay, H. Guclu, E. Soner and T. Balkas, Water Res., 1985, 19, 857 CAS.
  6. K. Yoshimura, Y. Miyazaki, S. Sawada and H. Waki, J. Chem. Soc., Faraday Trans., 1996, 92, 651 RSC.
  7. K. Yoshimura, Y. Miyazaki, F. Ota, S. Matsuoka and H. Sakashita, J. Chem. Soc., Faraday Trans., 1998, 94, 683 RSC.
  8. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum Press, New York and London, 1989, vol. 6, p. 398 Search PubMed.
  9. D. F. Kuemmel and M. G. Mellon, Anal. Chem., 1957, 29, 378 CrossRef CAS.
  10. S. Motomizu, I. Sawatani, M. Oshima and K. Toei, Anal. Chem., 1983, 55, 1629 CAS.
  11. H. Akaiwa, J. Radioanal. Chem., 1984, 84, 165 CAS.
  12. A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, 2nd edn., VCH, New York, 1992 Search PubMed.
  13. F. Helfferich, Ion Exchange, McGraw Hill, New York, 1962 Search PubMed.
  14. R. Chiarizia, E. P. Horwitz and S. D. Alexandratos, Solv. Extr. Ion Exchange, 1994, 12, 211 Search PubMed.
  15. J. G. Dawber, S. I. E. Greem, J. C. Dawber and S. Gabrail, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 41 RSC.
  16. M. Van Duin, J. A. Peters, A. P. G. Kieboom and H. Van Bekkum, Tetrahedron, 1985, 41, 3411 CrossRef CAS.
  17. A. Sonoda, N. Takagi, K. Ooi and T. Hirotsu, Bull. Chem. Soc. Jpn., 1998, 71, 161 CAS.
  18. S. A. Wasay, Md. J. Haron and S. Tokunaga, Water Environ. Res., 1996, 68, 295 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.