Blue luminescent zinc(II) complexes with polypyridylamine ligands: crystal structures and luminescence properties

(Note: The full text of this document is currently only available in the PDF Version )

Kin-Ying Ho, Wing-Yiu Yu, Kung-Kai Cheung and Chi-Ming Che


Abstract

A series of blue luminescent zinc(II) complexes, [Zn(dpa)X2] [dpa = di-2-pyridylamine, X = OAc 1a, Cl 1b, CN 1c or 4-MeC6H4S 1d], [Zn(dpa)2][CF3SO3]2 2, [Zn(tpda)X2] [tpda = 2,6-bis(2-pyridylamino)pyridine, X = OAc 3a or Cl 3b] and [Zn(tpda)(CF3SO3)2] 4 has been prepared. Their molecular structures, except complex 4, have been established by X-ray crystallography. In the crystal lattice of 2 the [Zn(dpa)2]2+ cations and CF3SO3 anions are disposed in pairs via intermolecular hydrogen bonds [N(2)[hair space][hair space]· · ·[hair space][hair space]O(2) 2.865(4) Å]. The crystal packing of [Zn(dpa)(OAc)2] 1a revealed that two adjacent molecules associate in pairs through intermolecular hydrogen bonding [N(2)[hair space][hair space]· · ·[hair space][hair space]O(4′) 2.816(3) Å]. However, the crystal lattice of its tpda derivative 3a shows that the molecules are linked by extensive intermolecular hydrogen bonding between the amino groups and the acetate ligands [N(2)[hair space][hair space]· · ·[hair space][hair space]O(2′) 2.805(3) and N(4)[hair space][hair space]· · ·[hair space][hair space]O(4′) 2.860(3) Å] resulting in an interlocking hydrogen bond network. Polymeric one-dimensional tapes are generated through extended π–π stacking interactions between the molecules of [Zn(dpa)(4-MeC6H4S)2] 1d, and the thiolate groups are aligned in an all-anti conformation along the metal chain. In the case of [Zn(dpa)(CN)2] 1c, co-operative intermolecular hydrogen bonds and aromatic π–π interactions in its solid state lead to a supramolecular two-dimensional sheet. All the zinc(II) complexes display high energy intraligand 1(π–π*) fluorescence in degassed MeOH at 298 K, and intraligand 3(π–π*) phosphorescence in a glassy solution (MeOH–EtOH 1∶2 at 77 K). An emission band observed for 1c (418 nm) and 1d (481 nm) in their solid state emission spectra is ascribed to excimeric emission due to aromatic π–π interactions.


References

  1. A. Kraft, A. C. Grimsdale and A. B. Holmes, Angew. Chem., Int. Ed. Engl., 1998, 37, 402 CrossRef.
  2. H. J. Brouwer, V. V. Krasnikov, A. Hilberer and G. Hadziioannou, Adv. Mater., 1996, 8, 935 CrossRef CAS; Y. Kim, S. Kwon, D. Yoo, M. F. Rubner and M. S. Wrighton, Chem. Mater., 1997, 9, 2699 CrossRef CAS.
  3. A. Hassan and S. Wang, Chem. Commun., 1998, 211 RSC and refs. therein.
  4. (a) M. Fukuda, K. Sawada and K. Yoshino, Jpn. J. Appl. Phys., 1989, 28, L1433 CAS; (b) M. Fukuda, K. Sawada and K. Yoshino, J. Polym. Sci. Polym. Chem., 1993, 31, 2465 Search PubMed; (c) G. Grem, G. Leditzky, B. Ullrich and G. Leising, Adv. Mater., 1992, 4, 36 CrossRef CAS; (d) see also, D. L. Gin and V. P. Conticello, Trends Polym. Sci., 1996, 4, 217 Search PubMed.
  5. (a) C.-F. Lee, K.-F. Chin, S.-M. Peng and C.-M. Che, J. Chem. Soc., Dalton Trans., 1993, 467 RSC; (b) Y. Ma, H.-Y. Chao, Y. Wu, S. T. Lee, W.-Y. Yu and C.-M. Che, Chem. Commun., 1998, 2491 RSC; (c) K.-Y. Ho, W.-Y. Yu, K.-K. Cheung and C.-M. Che, Chem. Commun., 1998, 2101 RSC.
  6. W. Liu, A. Hassan and S. Wang, Organometallics, 1997, 16, 4257 CrossRef CAS.
  7. F. A. Cotton, L. M. Daniels, G. T. Jordan IV and C. A. Murillo, Chem. Commun., 1997, 1673 RSC.
  8. (a) C.-C. Wang, W.-C. Lo, C.-C. Chou, G.-H. Lee, J.-M. Chen and S.-M. Peng, Inorg. Chem., 1998, 37, 4059 CrossRef CAS; (b) S.-J. Shieh, C.-C. Chou, G.-H. Lee, C.-C. Wang and S.-M. Peng, Angew. Chem., Int. Ed. Engl., 1997, 36, 56 CrossRef CAS; (c) J.-T. Sheu, C.-C. Lin, I. Chao, C.-C. Wang and S.-M. Peng, Chem. Commun., 1996, 315 RSC; (d) E.-C. Yang, M.-C. Cheng, M.-S. Tsai and S.-M. Peng, J. Chem. Soc., Chem. Commun., 1994, 2377 RSC.
  9. J. M. Lehn, Supramolecular Chemistry, 1st edn., VCH, New York, 1995 Search PubMed; D. Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1154 Search PubMed.
  10. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, 2nd edn., Pergamon, Oxford, 1980 Search PubMed.
  11. PATTY, P. R. Beursken, G. Admirall, W. P. Bosman, S. Garcia-Grauda, R. O. Gould, J. M. Smits, C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
  12. TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985 and 1992.
  13. SIR 92, Altomare, M. Cascarano, C. Giacovazzo, A. Guagliadi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435 Search PubMed.
  14. N. Ray and B. Hathaway, J. Chem. Soc., Dalton Trans., 1980, 1150 RSC.
  15. J. J. Wolff, Angew. Chem., Int. Ed. Engl., 1996, 35, 2195 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.