Electronic, Raman and resonance Raman spectroscopy of [NBu4][RuBr4(MeCN)2]

(Note: The full text of this document is currently only available in the PDF Version )

Ian M. Bell, Robin J. H. Clark and David G. Humphrey


Abstract

Raman spectra taken at resonance with the eu(Br pπ) → b2g(Ru dπ) charge-transfer (CT) transition of the trans-[RuBr4(MeCN)2] ion, as its [NBu4]+ salt at ca. 80 K, consist of long overtone progressions in ν1(a1g), the symmetric RuBr stretch (at 188.5 cm–1), together with combination band progressions in which ν1 is the progression-forming mode and the enabling modes include ν2(b1g), νas(RuBr), and ν4(b2g), δs(BrRuBr). The excitation profile of the ν1 band approximately follows the contour of the eu → b2g CT transition referred to above, consistent with the operation of the A-term scattering mechanism. The spectroscopic data allow the determination of the harmonic wavenumber (ω1) and anharmonicity (x11) of the ν1(a1g) mode to be 188.8 cm–1 and –0.15 cm–1, respectively. Some comparative data on the analogous chloride ion, trans-[RuCl4(MeCN)2], are also given.


References

  1. M. Hartmann, T. J. Einhauser and B. K. Keppler, Chem. Commun., 1996, 1741 RSC.
  2. W. Preetz and F. H. Johannsen, J. Organomet. Chem., 1975, 86, 397 CrossRef CAS.
  3. G. J. Leigh and D. M. P. Mingos, J. Chem. Soc. A, 1970, 587 RSC.
  4. M. D. Rowe, A. J. McCaffery, R. Gale and D. N. Copsey, Inorg. Chem., 1972, 11, 3090 CrossRef CAS.
  5. C. M. Duff and G. A. Heath, J. Chem. Soc., Dalton Trans., 1991, 2401 RSC.
  6. A. J. McCaffery and M. D. Rowe, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 1767 RSC.
  7. J. P. Al-Dulaimi, R. J. H. Clark and D. G. Humphrey, unpublished work.
  8. J. P. Al-Dulaimi, R. J. H. Clark and D. G. Humphrey, J. Chem. Soc., Dalton Trans., 1997, 2535 RSC.
  9. V. T. Coombe, G. A. Heath, T. A. Stephenson and D. K. Vattis, J. Chem. Soc., Dalton Trans., 1983, 2307 RSC.
  10. P. Braunstein and J. Rose, Inorg. Synth., 1989, 26, 356 CAS.
  11. D. H. Whiffen, Spectroscopy, Longmans, London, 1966, p. 141. The one-electron spin–orbit coupling constants (ξ) of Cl and Br are 586 and 2460 cm–1, respectively Search PubMed.
  12. C. K. Jørgenson, Mol. Phys., 1959, 2, 309.
  13. G. A. Heath and D. G. Humphrey, J. Chem. Soc., Chem. Commun., 1991, 1668 RSC.
  14. F. H. Johannsen and W. Preetz, Z. Anorg. Allg. Chem., 1977, 436, 143 CrossRef CAS.
  15. Y. M. Bosworth and R. J. H. Clark, Chem. Phys. Lett., 1974, 28, 611 CrossRef CAS.
  16. The Raman spectra of [NEt4][RuCl4(MeCN)2] was recorded as an undiluted salt at room temperature on a Renishaw Raman System 1000 using the 514.5 nm excitation line (0.1 mW) of an argon ion laser. There was no evidence for sample damage at this power, and the spectrum contained, in addition to a band attributable to the v1(a1g), vs(RuCl) mode at 310 cm –1 , medium bands at 965 cm -1[assigned to v(CC)] and 1381 cm –1[assigned to δ(CH3)], and a strong band at 2305 cm–1[assigned to v(CN)]; these bands all have obvi-ous analogues in the Raman spectrum of [NBu4][RuBr4(MeCN)2](Table 2).
  17. Y. M. Bosworth and R. J. H. Clark, Inorg. Chem., 1975, 14, 170 CrossRef.
  18. K. Venkateswarlu, J. Chem. Phys., 1951, 19, 293 CrossRef.
  19. J. J. F. Alves and D. W. Franco, Polyhedron, 1996, 15, 3299 CrossRef.
  20. R. J. H. Clark, in Advances in Infrared and Raman Spectroscopy, ed. R. J. H. Clark and R. E. Hester, Heyden, London, 1975, vol. 1, pp. 143–172 Search PubMed.
  21. R. J. H. Clark and T. J. Dines, Angew. Chem., Int. Ed. Engl., 1986, 25, 131 CrossRef.
  22. J. R. Campbell and R. J. H. Clark, Mol. Phys., 1978, 36, 1133 CAS.
  23. R. J. H. Clark and P. C. Turtle, J. Chem. Soc., Faraday Trans. 2, 1978, 74, 2063 RSC.
  24. The excitation profile and the electronic spectrum are expected, on theoretical grounds,21 to match each other very closely, but not exactly; moreover, in the present case, the excitation profile relates to a KBr disc at 80 K whereas the electronic spectrum relates to a CH2Cl2 solution, a fact which might contribute to the slight difference.
  25. R. J. H. Clark and T. J. Dines, Mol. Phys., 1984, 52, 859 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.