[Me2Si] Ansa bridged complexes of permethyltitanocene: synthesis and structural characterization of fulvene derivatives with trialkylidenemethane character[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Hyosun Lee, Jeffrey B. Bonanno, Tony Hascall, Joseph Cordaro, Juliet M. Hahn and Gerard Parkin


Abstract

A series of permethylated [Me2Si] ansa bridged titanocene complexes has been synthesized and structurally characterized by X-ray doffraction; the dialkyl complexes [Me2Si(C5Me4)]TiR2 are thermally unstable towards elimination of alkane (RH), thereby yielding fulvene derivatives [Me2Si(C5Me4)(C5Me3CH2)]TiR.


References

  1. H. Lee, P. J. Desrosiers, I. Guzei, A. L. Rheingold and G. Parkin, J. Am. Chem. Soc., 1998, 120, 3255 CrossRef CAS.
  2. P. Jutzi and R. Dickbreder, Chem. Ber., 1986, 119, 1750 CAS.
  3. Other [Me2Si(C5Me4)2]TiX2 derivatives include [Me2Si(C5Me4)2]TiCl and [Me2Si(C5Me4)2]Ti[η2-C2(SiMe3)2]. See: V. Varga, J. Hiller, R. Gyepes, M. Polasek, P. Sedmera, U. Thewalt and K. Mach, J. Organomet. Chem., 1997, 538, 63 Search PubMed.
  4. For unsubstituted analogs, [Me2Si(C5H4)2]TiR2, see: (a) R. Gómez, T. Cuenca, P. Royo, W. A. Herrmann and E. Herdtweck, J. Organomet. Chem., 1990, 382, 103 CrossRef CAS; (b) R. Gómez, T. Cuenca, P. Royo and E. Hovestreydt, Organometallics, 1991, 10, 2516 CrossRef CAS.
  5. Alternatively, [Me2Si(C5Me4)2]Ti[(C6H4)2] may also be obtained by reaction of [Me2Si(C5Me4)2]TiPh2 with PhLi.
  6. H. Lee, J. Cordaro and J. B. Bonanno, unpublished work.
  7. Non-bridged fulvene analogs Cp*(C5Me4CH2)TiR (R = H, Me, CH2CMe3, CH2SiMe3, Ph, CH[double bond, length as m-dash]CH2) have also been reported. See, for example: (a) C. McDade, J. C. Green and J. E. Bercaw, Organometallics, 1982, 1, 1629 CrossRef CAS; (b) G. A. Luinstra, P. H. P. Brinkmann and J. H. Teuben, J. Organomet. Chem., 1997, 532, 125 CrossRef CAS; (c) G. A. Luinstra and J. H. Teuben, Organometallics, 1992, 11, 1793 CrossRef CAS; (d) J. L. Polse, R. A. Andersen and R. G. Bergman, J. Am. Chem. Soc., 1996, 118, 8737 CrossRef CAS; (e) J. L. Polse, A. W. Kaplan, R. A. Andersen and R. G. Bergman, J. Am. Chem. Soc., 1998, 120, 6316 CrossRef CAS; (f) R. Beckhaus, J. Oster and T. Wagner, Chem. Ber., 1994, 127, 1003 CAS; (g) R. Beckhaus, J. Oster, I. Sang, I. Strauβ and M. Wagner, Synlett, 1997, 241 CAS.
  8. The CH2 groups in [Me2Si(C5Me4)(C5Me3CH2)]TiR are characterized by 13C NMR signals at ca. δ 80, with 1JC–H coupling constants of ca. 150 Hz: Me (δ 78.3, 149 and 154 Hz), Ph (δ 82.5, 150 and 153 Hz) and CH2SiMe3(δ 80.2 ppm, 149 and 151 Hz). These values are comparable to those for Cp*(C5Me4CH2)TiR derivatives (see, for example, ref. 7).
  9. The Ti–C bond lengths for the unmetallated cyclopentadienyl group range from 2.29 Å to 2.46 Å.
  10. For a review of bonding in fulvene complexes, see: J. A. Bandy, V. S. B. Mtetwa, K. Prout, J. C. Green, C. E. Davies, M. L. H. Green, N. J. Hazel, A. Izquierdo and J. J. Martin-Polo, J. Chem. Soc., Dalton Trans., 1985, 2037 Search PubMed.
  11. For further comparison, the longest Ti–C bond length in the Ti(III) complex Cp*(C5Me4CH2)Ti is 2.47 Å. See: J. M. Fischer, W. E. Piers and V. G. Young, Jr., Organometallics, 1996, 15, 2410 Search PubMed.
  12. For trialkylidene methane derivatives of zirconium, see: G. Rodriguez and G. C. Bazan, J. Am. Chem. Soc., 1997, 119, 343 Search PubMed.
  13. Thus, the Ti–C12 bond deviates by only 2.5° from the Ti–centroid vector.
  14. (a) L. E. Schock, C. P. Brock and T. J. Marks, Organometallics, 1987, 6, 232 CrossRef CAS; (b) A. R. Bulls, W. P. Schaefer, M. Serfas and J. E. Bercaw, Organometallics, 1987, 6, 1219 CrossRef CAS.
  15. For example, the wide range of M–C bond lengths in the zirconium and hafnium complexes, Cp*(C5Me4CH2)ZrPh (2.28–2.62 Å)14a and Cp*(C5Me4CH2)HfCH2Ph (2.25–2.60 Å),14b suggests that they may also be considered to possess trialkylidenemethane character.
  16. Specifically, [Me2Si(C5Me4)2]Ti(CD3)2 yields principally the isotopomers [Me2Si(C5Me4)(C5Me3CH2)]Ti(CD2H) and CD4, rather than [Me2Si(C5Me4)(C5Me3CH2)]Ti(CD3) and CD3H.
  17. C. McDade, J. C. Green and J. E. Bercaw, Organometallics, 1982, 1, 1629 CrossRef CAS.
  18. For [Me2Si(C5Me4)2]TiMe2: ΔH‡= 27.8(8) kcal mol–1, ΔS‡=–5(2) e.u. (1 e.u. = 4.184 J K–1 mol–1). For Cp*2TiMe2: ΔH‡= 27.6(3) kcal mol–1, ΔS‡=–2.9(7) e.u. (ref. 17).
  19. Interestingly, values of kH/kD≈ 5 have also been observed for elimination of methane from Cp*2Ti(CH3)(C6D5)(5.7 at 33 °C) and Cp*2Ti(CH3)(CD[double bond, length as m-dash]CD2)(5.1 at 80 °C). See ref. 7(c).
  20. A benzyne intermediate has also been proposed in the formation of Cp*(C5Me4CH2)ZrPh by thermal elimination of PhH and H2 from Cp*2ZrPh214a and Cp*2Zr(Ph)H (F. D. Miller and R. D. Sanner, Organometallics, 1998, 7, 818), respectively Search PubMed.
  21. Cp2TiPh2 has been proposed to decompose via ortho-hydrogen abstraction by the other phenyl group generating a benzyne intermediate, [Cp2Ti(η2-C6H4)]. See: (a) J. Dvorak, R. J. O'Brien and W. Santo, Chem. Commun., 1970, 411 RSC; (b) C. P. Boekel, J. H. Teuben and H. J. de Liefde Meijer, J. Organomet. Chem., 1975, 102, 161 CrossRef CAS.
  22. At 40 °C, the rate constants for elimination of RH from [Me2-Si(C5Me4)2]TiR2 are: Ph [1.30(1)× 10–4s–1], CH2SiMe3[9.85(9)× 10–5s–1] and Me [2.0 × 10–8s–1]. The value for the methyl derivative is that determined by the activation parameters listed in ref. 18.
  23. The numbering system is such that C1 is the ring carbon attached to silicon.
  24. D. J. Sikora, M. D. Rausch, R. D. Rogers and J. L. Atwood, J. Am. Chem. Soc., 1981, 103, 1265 CrossRef CAS.
  25. ESR spectroscopic studies suggest that 2-methyltetrahydrofuran binds more strongly to [Me2Si(C5Me4)2]TiCl than to Cp*2TiCl, providing further evidence for enhanced electrophilicity of the ansa titanocene system. See ref. 3.
  26. It should, however, be noted that computational studies suggest that ring slippage and tilt introduced by incorporation of bulky substituents are not the principal factors responsible for modification of the electron density at a metal center in a series of non-bridged titanocene complexes; rather the changes in electron density merely reflect the inductive effects of the various substituents. See: B. E. Bursten, M. R. Callstrom, C. A. Jolly, L. A. Paquette, M. R. Sivik, R. S. Tucker and C. A. Wartchow, Organometallics, 1994, 13, 127 Search PubMed.
  27. T. C. McKenzie, R. D. Sanner and J. E. Bercaw, J. Organomet. Chem., 1975, 102, 457 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.