Syntheses and crystal structures of iron co-ordination polymers with 4,4′-bipyridine (4,4′-bpy) and 4,4′-azopyridine (azpy). Two-dimensional networks supported by hydrogen bonding, {[Fe(azpy)(NCS)2(MeOH)2]·azpy}n and {[Fe(4,4′-bpy)(NCS)2(H2O)2]·4,4′-bpy}n

(Note: The full text of this document is currently only available in the PDF Version )

Shin-ichiro Noro, Mitsuru Kondo, Tomohiko Ishii, Susumu Kitagawa and Hiroyuki Matsuzaka


Abstract

New iron(II) co-ordination polymers, {[Fe(azpy)(NCS)2(MeOH)2]·azpy}n 1 (azpy = 4,4′-azopyridine), {[Fe(4,4′-bpy)(NCS)2(H2O)2]·4,4′-bpy}n 2 (4,4′-bpy = 4,4′-bipyridine) and {[Fe(azpy)2(NCS)2]·3H2O}n 3 have been synthesized and characterized. The crystal structures of both compounds 1 and 2 contain two types of bridging ligands; one is of the co-ordination bond type, directly bridging iron centers to form a one-dimensional chain of [Fe(L)] (L = azpy or 4,4′-bpy), while the other links these chains by hydrogen bonds between the pyridine nitrogen atoms and co-ordinated methanol or water molecules, resulting in a grid sheet. Each sheet shows non-interpenetration because of incorporation of NCS anion in the grid. Cyclic voltammograms of 1 and 3 demonstrate that the directly bridging azpy ligands show no apparent redox activity, whereas a reversible redox wave observed for 1 is attributed to the hydrogen-bonding supported azpy. Magnetic susceptibilities measured from 1.9 to 300 K are indicative of no appreciable magnetic exchange interaction between the adjacent metal ions.


References

  1. M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 1994, 116, 1151 CrossRef CAS.
  2. M. Li, G. Y. Xie and Y. D. Gu, Polyhedron, 1995, 14, 1235 CrossRef CAS.
  3. J. Lu, T. Paliwala, S. C. Lim, C. Yu, T. Niu and A. J. Jacobson, Inorg. Chem., 1997, 36, 923 CrossRef CAS.
  4. L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, J. Chem. Soc., Dalton Trans., 1997, 1801 RSC.
  5. A. J. Blake, S. J. Hill, P. Hubberstey and W. S. Li, J. Chem. Soc., Dalton Trans., 1997, 913 RSC.
  6. X. M. Chen, M. L. Tong, Y. J. Luo and Z. N. Chen, Aust. J. Chem., 1996, 49, 835 CAS.
  7. M. L. Tong, X. M. Chen, X. L. Yu and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1998, 5 RSC.
  8. R. W. Gable, B. F. Hoskins and R. Robson, J. Chem. Soc., Chem. Commun., 1990, 1667 RSC.
  9. L. R. MacGillivary, R. H. Groeneman and J. L. Atwood, J. Am. Chem. Soc., 1998, 120, 2676 CrossRef CAS.
  10. J. A. Real, E. Andres, M. C. Munoz, M. Julve, T. Granier, A. Bousseksou and F. Varret, Science, 1995, 268, 265 CrossRef CAS.
  11. J. A. Real, G. D. Munno, M. C. Munoz and M. Julve, Inorg. Chem., 1991, 30, 2071.
  12. S. Kawata, S. Kitagawa, M. Kondo, I. Furuchi and M. Munakata, Angew. Chem., Int. Ed. Engl., 1994, 33, 1759 CrossRef.
  13. J. Haladjian, R. Pilard, P. Bianco and L. Asso, Electrochim. Acta, 1985, 30, 695 CrossRef CAS.
  14. E. V. Brown and G. R. Granneman, J. Am. Chem. Soc., 1975, 97, 621 CrossRef CAS.
  15. N. Campbell, A. W. Henderson and D. Taylor, J. Chem. Soc., 1953, 1281 RSC.
  16. G. M. Sheldrick, in Crystallographic Computing 3 eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, 1985, pp. 175–189 Search PubMed.
  17. P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, The DIRDIF Program System, Technical Report, Crystallography Laboratory, University of Nijmegen, 1992.
  18. A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  19. TEXSAN, TEXRAY Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985 and 1992.
  20. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  21. J. L. Sadler and A. J. Bard, J. Am. Chem. Soc., 1968, 90, 1979 CAS.
  22. A. J. Bellamy, I. S. MacKirdy and C. E. Niven, J. Chem. Soc., Perkin Trans. 2, 1983, 183 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.