Co-ordination chemistry of 3S-aminopyrrolidine and 3S-(methylamino)pyrrolidine: crystallisation of the two diastereomers of dichloro[3S-(R,S-methylamino)pyrrolidine]palladium(II)

(Note: The full text of this document is currently only available in the PDF Version )

Paul D. Newman, Michael B. Hursthouse and K. M. Abdul Malik


Abstract

Complexes of divalent Cu, Ni, Pd and Pt with 3S-aminopyrrolidine (S-ap) have been prepared and characterised by a combination of NMR, CD, electronic, IR and microanalytical techniques. The chosen chirality of the stereogenic carbon (S[hair space]) forces the secondary nitrogen to adopt the R stereochemistry on co-ordination with the conformation of the 5-membered chelate being λ. The planar [M(S-ap)2]2+ complexes exist as a mixture of cis and trans isomers in the solid state and in solution. The trans arrangement is forced upon co-ordination of an axial donor (X = halide, thiocyanate or nitrite) in the five-co-ordinate ions [Cu(S-ap)2X]+. Methylation of the primary amine of S-ap generates another secondary nitrogen centre in the new ligand 3S-(methylamino)pyrrolidine, S-meap. This exocyclic nitrogen is not restricted to a single configuration on co-ordination. The complexes [M(S-meap)Cl2], where M = Pd or Pt, have been prepared and characterised. Both diastereoisomers (R- and S-NMe) of [Pd(S-meap)Cl2] crystallise from aqueous solution as distinct crystal forms which can be separated by mechanical means. The structure of the NMe(R) isomer has been determined by X-ray crystallography.


References

  1. D. A. House, in Comprehensive Co-ordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2, p. 30 Search PubMed.
  2. M. Takamatsu, Eur. Pat. Appl., 0 327 709 A2, 1988 Search PubMed.
  3. V. Moreno, G. Cervantes, G. B. Onoa, F. Sampedro, P. Santaló, X. Solans and M. Font-Bardìa, Polyhedron, 1997, 16, 4297 CrossRef CAS.
  4. F. P. Fanizzi, L. Maresca, G. Natile, M. Lanfranchi, A. M. Manotti-Lanfredi and A. Tiripicchio, Inorg. Chem., 1988, 27, 2422 CrossRef CAS.
  5. M. Morita and S. Yoshikawa, J. Chem. Soc., Chem. Commun., 1972, 578 RSC.
  6. H. Ito, J. Fujita and K. Saito, Bull. Chem. Soc. Jpn., 1967, 40, 2584 CAS.
  7. E. A. Sullivan, Can. J. Chem., 1979, 57, 67 CAS.
  8. B. Bosnich and E. A. Sullivan, Inorg. Chem., 1975, 14, 2768 CrossRef CAS.
  9. Y. Nakayama, K. Matsumoto, S. Ooi and H. Kuroya, Bull. Chem. Soc. Jpn., 1977, 50, 2304 CAS.
  10. A. E. Sullivan, Can. J. Chem., 1979, 57, 62.
  11. O. P. Slyudkin, O. N. Adrianova, P. A. Chel'tsov and L. M. Volshtein, Russ. J. Inorg. Chem. (Int. Ed.), 1973, 18, 1398 Search PubMed.
  12. T. J. Appleton and J. R. Hall, Inorg. Chem., 1972, 11, 117 CrossRef CAS.
  13. K. Miyamura, M. Saburi, S. Tsuboyama, K. Tsuboyama and T. Sakurai, J. Chem. Soc., Dalton Trans., 1988, 1543 RSC.
  14. K. Miyoshi, H. Tanaka, E. Kimura, S. Tsuboyama, S. Murata, H. Shimizu and K. Ishizu, Inorg. Chim. Acta, 1983, 78, 23 CrossRef CAS.
  15. K. Kamisawa, K. Matsumoto, S. Ooi, H. Kuroya, R. Saito and Y. Kidani, Bull. Chem. Soc. Jpn., 1978, 51, 2330 CAS.
  16. J. Iball, M. MacDougall and S. Scrimgeour, Acta Crystallogr., Sect. B, 1975, 31, 1672 CrossRef.
  17. I. Bernal, Inorg. Chim. Acta, 1985, 96, 99 CrossRef CAS.
  18. J. A. Darr, S. R. Drake, M. B. Hursthouse and K. M. A. Malik, Inorg. Chem., 1993, 32, 5704 CrossRef CAS.
  19. N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  20. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  21. G. M. Sheldrick, SHELXL 96 Program for Crystal Structure Refinement, University of Göttingen, 1996.
  22. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.