Lanthanide complexes of a new sterically hindered potentially hexadentate podand ligand based on a tris(pyrazolyl)borate core; crystal structures, solution structures and luminescence properties

(Note: The full text of this document is currently only available in the PDF Version )

Zoe R. Reeves, Karen L. V. Mann, John C. Jeffery, Jon A. McCleverty, Michael D. Ward, Francesco Barigelletti and Nicola Armaroli


Abstract

The new podand ligand hydrotris[3-(6-methyl)pyridin-2-ylpyrazol-1-yl]borate [L1] was prepared which contains three bidentate pyrazolyl/pyridine arms attached to a {BH} head-group. This ligand differs from an earlier ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate [L2] by the presence of methyl groups attached to the C6 positions of the pyridyl rings, which would interfere with each other sterically if the ligand co-ordinated in a fully hexadentate manner. Instead, crystallographic analysis of the complexes [M(L1)(NO3)2(H2O)] (M = Eu, Tb or Gd) showed that partial dissociation of the podand occurs to relieve this potential steric problem: either one or two of the pyridyl groups are not co-ordinated, such that [L1] is penta- or tetra-dentate, but instead are involved in intramolecular N[hair space][hair space]· · ·[hair space][hair space]H–O hydrogen-bonding interactions with the co-ordinated water molecule. The presence of both structural forms in single crystals of the gadolinium and europium complexes shows that interconversion between them in solution must be facile. Variable-temperature 1H NMR spectra of the diamagnetic lanthanum(III) analogue shows that, whereas all three ligand arms are equivalent on the NMR timescale at high temperatures, at –80 °C there is mirror symmetry in the complex such that two arms are equivalent and the third is different from the other two; this is consistent with the crystalline form in which [L1] is tetradentate with two pendant pyridyl arms, which has pseudo-mirror symmetry. Luminescence studies showed that whereas the ligand-based luminescence is retained in the gadolinium(III) complex, in the europium(III) and terbium(III) complexes the ligand-centred emission is quenched by ligand-to-metal energy transfer, resulting in the usual metal-centred emission spectra. The intensity of the emission from the europium(III) and terbium(III) complexes of [L1] is substantially reduced compared to the emission from the analogous complexes [M(L2)(NO3)2] (M = Eu or Tb) which we ascribe to the sterically induced poorer co-ordination of the podand ligand, resulting in (i) less efficient ligand-to-metal energy transfer, and (ii) co-ordination of labile solvent molecules (H2O) to the metal centres.


References

  1. D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 3613 RSC .
  2. S. Aime, M. Botta, M. Fasano and E. Terreno, Chem. Soc. Rev., 1998, 27, 19 RSC .
  3. N. Sabbatini, M. Guardigli and J.-M. Lehn, Coord. Chem. Rev., 1993, 123, 201 CrossRef CAS .
  4. N. Sabbatini, M. Guardigli and I. Manet, in Handbook on The Physics and Chemistry of Rare Earths, eds. K. A. Gschneidner Jr. and L. Eyring, Elsevier, Amsterdam, 1996, vol. 23 Search PubMed .
  5. B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner and N. Sabbatini, Photochem. Photobiol., 1990, 52, 299 CrossRef CAS .
  6. L. Prodi, M. Maestri, R. Ziessel and V. Balzani, Inorg. Chem., 1991, 30, 3798 CrossRef CAS .
  7. S. L. Wu and DeW. Horrocks Jr., J. Chem. Soc., Dalton Trans., 1997, 1497 RSC .
  8. A. P. de Silva, H. Q. N. Gunaratne, T. E. Rice and S. Steward, Chem. Commun., 1997, 1891 RSC .
  9. M. P. O. Wolbers, F. C. J. M. van Veggel, B. H. M. Snellink-Ruël, J. W. Hofstraat, F. A. J. Geurts and D. N. Reinhoudt, J. Am. Chem. Soc., 1997, 119, 138 CrossRef .
  10. N. Sabbatini, A. Casnati, C. Fischer, R. Girardini, M. Guardigli, I. Manet, G. Sarti and R. Ungaro, Inorg. Chim. Acta, 1996, 252, 19 CrossRef CAS ; G. Ulrich, R. Ziessel, I. Manet, M. Guardigli, N. Sabbatini, F. Fraternali and G. Wipff, Chem. Eur J., 1997, 3, 1815 CrossRef CAS .
  11. N. Martin, J.-C. G. Bünzli, V. McKee, C. Piguet and G. Hopfgartner, Inorg. Chem., 1998, 37, 577 CrossRef CAS .
  12. M. Lata, H. Takalo, V.-M. Mukkala and J. Kankare, Inorg. Chim. Acta, 1998, 267, 63 CrossRef CAS .
  13. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10 CrossRef CAS .
  14. N. Armaroli, V. Balzani, F. Barigelletti, M. D. Ward and J. A. McCleverty, Chem. Phys. Lett., 1997, 276, 435 CrossRef CAS .
  15. D. Pubanz, G. González, D. H. Powell and A. E. Merbach, Inorg. Chem., 1995, 34, 4447 CrossRef CAS .
  16. Z. Wang, J. Reibenspies, R. J. Motekaitis and A. E. Martell, J. Chem. Soc., Dalton Trans., 1995, 1511 RSC .
  17. J. E. Parks, B. E. Wagner and R. H. Holm, J. Organomet. Chem., 1973, 56, 53 CrossRef CAS .
  18. SADABS, A program for absorption correction with the Siemens SMART area-detector system, G. M. Sheldrick, University of Göttingen, 1996 .
  19. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995 .
  20. J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 93, 2841 .
  21. K. Nakamaru, Bull. Soc. Chem. Jpn., 1982, 5, 2697 .
  22. S. R. Meech and D. J. Philips, J. Photochem., 1983, 23, 193 CrossRef CAS .
  23. Y. Lin and S. A. Lang, Jr., J. Heterocycl. Chem., 1977, 14, 345 CrossRef CAS .
  24. A. Novak, Struct. Bonding (Berlin), 1974, 18, 177 CAS .
  25. D. A. Bardwell, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 2921 RSC .
  26. R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths, Springer, Berlin, 1977 Search PubMed .
  27. W. D. Horrocks and D. R. Sudnick, Acc. Chem. Res., 1981, 14, 384 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.