Extent of intramolecular stacking interactions in the mixed-ligand complexes formed in aqueous solution by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and 2′-deoxyguanosine 5′-monophosphate[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Marc Sven Lüth, Larisa E. Kapinos, Bin Song, Bernhard Lippert and Helmut Sigel


Abstract

The stability constants of the mixed-ligand complexes formed between Cu(arm)2+, where arm = 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen), and the monoanion or the dianion of 2′-deoxyguanosine 5′-monophosphoric acid [H(dGMP) or dGMP2–] were determined by potentiometric pH titration in aqueous solution at 25 °C and I = 0.1 mol dm–3 (NaNO3). A microconstant scheme reveals that in the binary Cu(H;dGMP)+ species the metal ion is overwhelmingly bound at N7 and the proton at the phosphate group; similarly, in the ternary Cu(arm)(H;dGMP)+ complexes the Cu(arm)2+ unit is also at N7 and the proton at the phosphate residue, i.e., stacking plays only a very minor role in these systems. This is different in the Cu(arm)(dGMP) complexes where the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic ring systems of phen or bipy and the purine moiety of dGMP2–. Macrochelate formation of a phosphate-coordinated metal ion with N7 (cl = closed/N7) is insignificant in the ternary complexes, but very pronounced in the binary Cu(dGMP) complex where it reaches a formation degree of about 93%. A quantitative analysis of the intramolecular equilibria involving the three structurally different Cu(arm)(dGMP) species is presented and it is shown that, e.g., the ‘open’ Cu(phen)(dGMP)op isomer occurs with a formation degree of about 5%, the macrochelated Cu(phen)(dGMP)cl/N7 species with about 6% and the stacked Cu(phen)(dGMP)st isomer with approximately 89%; the percentages for the Cu(bipy)(dGMP) system are similar. The relevance of these results with regard to biological systems is indicated.


References

  1. (a) Part 61, S. A. A. Sajadi, B. Song, F. Gregáň and H. Sigel, Bull. Chem Soc. Ethiop., 1997, 11, 121 Search PubMed; (b) Part 60, S. A. A. Sajadi, B. Song and H. Sigel, Inorg. Chim. Acta, 1998, 283, 193 Search PubMed; (c) Part 59, B. Song, S. A. A. Sajadi, F. Gregáň, N. Prónayová and H. Sigel, Inorg. Chim. Acta, 1998, 273, 101 Search PubMed.
  2. (a) Interactions of Metal Ions with Nucleotides, Nucleic Acids, and Their Constituents, Vol. 32 of Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Dekker, New York, 1996 Search PubMed; (b) Probing of Nucleic Acids by Metal Ion Complexes of Small Molecules, Vol. 33 of Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Dekker, New York, 1996 Search PubMed.
  3. (a) M. Sabat and B. Lippert, Met. Ions Biol. Syst., 1996, 33, 143 Search PubMed [see ref. 2(b)]; (b) R. K. O. Sigel, E. Freisinger and B. Lippert, Chem. Commun., 1998, 219 RSC.
  4. O. Yamauchi, A. Odani, H. Masuda and H. Sigel, Met. Ions Biol. Syst., 1996, 32, 207 Search PubMed [see ref. 2(a)].
  5. S. Doublié, S. Tabor, A. M. Long, C. C. Richardson and T. Ellenberger, Nature (London), 1998, 391, 251 CrossRef CAS.
  6. J. R. Kiefer, C. Mao, J. C. Braman and L. S. Beese, Nature (London), 1998, 391, 304 CrossRef CAS.
  7. (a) L. W. Tari, A. Matte, U. Pugazhenthi, H. Goldie and L. T. J. Delbaere, Nature Struct. Biol., 1996, 3, 355 CAS; (b) L. W. Tari, A. Matte, H. Goldie and L. T. J. Delbaere, Nat. Struct. Biol., 1997, 4, 990 CAS.
  8. B. Lippert, J. Chem. Soc., Dalton Trans., 1997, 3971 RSC and refs. therein.
  9. H. Sigel, Pure Appl. Chem., 1989, 61, 923 CrossRef CAS.
  10. (a) O. Yamauchi, Pure Appl. Chem., 1995, 67, 297 CAS; (b) F. Zhang, A. Odani, H. Masuda and O. Yamauchi, Inorg. Chem., 1996, 35, 7148 CrossRef CAS.
  11. H. Sigel, R. Tribolet and O. Yamauchi, Comments Inorg. Chem., 1990, 9, 305 CrossRef CAS.
  12. D. Chen, M. Bastian, F. Gregánň, A. Holý and H. Sigel, J. Chem. Soc., Dalton Trans., 1993, 1537 RSC.
  13. (a) K. Aoki, Met. Ions Biol. Syst., 1996, 32, 91 Search PubMed [see ref. 2(a)]; (b) R. B. Martin and Y. H. Mariam, Met. Ions Biol. Syst., 1979, 8, 57 Search PubMed; (c) R. Tribolet and H. Sigel, Eur. J. Biochem., 1987, 163, 353 CAS.
  14. B. Song and H. Sigel, Inorg. Chem., 1998, 37, 2066 CrossRef CAS.
  15. H. Sigel and B. Song, Met. Ions Biol. Syst., 1996, 32, 135 Search PubMed [see ref. 2(a)].
  16. G. Anderegg, Helv. Chim. Acta, 1963, 46, 2397 CrossRef CAS; H. Irving and D. H. Mellor, J. Chem. Soc., 1962, 5222 RSC.
  17. H. Sigel, B. Song, G. Oswald and B. Lippert, Chem. Eur. J., 1998, 4, 1053 CrossRef CAS.
  18. H. Sigel, S. S. Massoud and N. A. Corfù, J. Am. Chem. Soc., 1994, 116, 2958 CrossRef CAS.
  19. R. Tribolet, R. Malini-Balakrishnan and H. Sigel, J. Chem. Soc., Dalton Trans., 1985, 2291 RSC.
  20. P. R. Mitchell, J. Chem. Soc., Dalton Trans., 1980, 1079 RSC.
  21. B. Song, G. Oswald, M. Bastian, H. Sigel and B. Lippert, Metal-Based Drugs, 1996, 3, 131 Search PubMed.
  22. H. Sigel, A. D. Zuberbühler and O. Yamauchi, Anal. Chim. Acta, 1991, 255, 63 CrossRef CAS.
  23. H. M. Irving, M. G. Miles and L. D. Pettit, Anal. Chim. Acta, 1967, 38, 475 CrossRef CAS.
  24. L. E. Kapinos, B. Song and H. Sigel, Inorg. Chim. Acta, (Vol'pin Memorial Issue), 1998, 280, 50 Search PubMed.
  25. H. Sigel and B. Lippert, Pure Appl. Chem., 1998, 70, 845 CAS.
  26. B. Song, D. Chen, M. Bastian, R. B. Martin and H. Sigel, Helv. Chim. Acta, 1994, 77, 1738 CrossRef CAS.
  27. R. K. O. Sigel, B. Song and H. Sigel, J. Am. Chem. Soc., 1997, 119, 744 CrossRef.
  28. This estimate is made in the following way. The stability constant of Cu(2′-deoxyguanosine)2+, log KCuCu(dGuo)= 2.12 ± 0.14,29 is corrected for the different basicities of the N7 site in H(dGMP) and 2′-deoxyguanosine [i.e., ΔpKa= pKHH2(dGMP)– pKHH(dGuo)=(2.65 ± 0.03)–(2.30 ± 0.04; cf. ref. 29)= 0.35 ± 0.05] by the slope (m= 0.38) of the regression line for log K versus pKa plots24 for imidazoletype ligands. This gives the “corrected” value (2.12 ± 0.14)+(0.13 ± 0.05)= 2.25 ± 0.15 which needs to be further corrected for the charge effect that the PO2(OH) group exerts on Cu2+ at the N7 site [the effect of the same group on H+(N7) is taken care of by Δ pKa], corresponding to 0.40 ± 0.15 log units, as is known from various other cases where the distances between the positive and negative charges are of a comparable size.30 Finally, the extent of macrochelate formation of the N7-coordinated Cu2+ with the PO2(OH) group should be considered: if one assumes that the macrochelate is formed to about 20%, i.e., that the intramolecular equilibrium (Cu·dGMP·H)+⇄(dG·Cu·MP·H)+ actually exists, 0.10 ± 0.10 log units have to be added. Hence, log kCuCu(dGMP·H)=(2.25 ± 0.15)+(0.40 ± 0.15)+(0.10 ± 0.10)= 2.75 ± 0.23. The error limit for 0.10 is taken such that it encompasses the maximum degree of formation possible for the macrochelate as well as the situation that no macrochelate is formed at all. It needs to be emphasized that with a formation degree of 29% log kCuCu(dGMP·H) would already equal log KCuCu(H;dGMP)= 2.80 [Table 1; see also Sections 4 and 5 regarding the macrochelates Cu(dGMP)cl/N7 and Cu(arm)(dGMP)cl/N7, respectively] and then only the upper pathway in Fig. 3 would exist.
  29. B. Song, J. Zhao, R. Griesser, C. Meiser, H. Sigel and B. Lippert, submitted.
  30. M. Bastian and H. Sigel, J. Coord. Chem., 1991, 23, 137 CAS.
  31. The error propagation according to Gauss gives for log kCuH(dGMP·Cu)= 1.84 (lower pathway at the left in Fig. 3) the exceedingly large error of ±1.97 log units. The reason for this is that according to eqn. (a) of Fig. 3 kCuH(dGMP·Cu)=KCuCu(H;dGMP)kCuCu(dGMP·H)= 10(2.80 ± 0.10)– 10(2.75 ± 0.23); here a difference is calculated between two large and very similar values with overlapping error limits. In other words, the result 1.84 ± 1.97 is “meaningless” except that it indicates a small value for kCuH(dGMP·Cu) and that the reaction must overwhelmingly follow the upper path in the scheme of Fig. 3. The fact that the value for kCuH(dGMP·Cu) must be small(despite its large error limit) permits estimation of a value for R[eqn. (10)].
  32. H. Sigel and N. A. Corfù, results to be published.
  33. J. B. Orenberg, B. E. Fischer and H. Sigel, J. Inorg. Nucl. Chem., 1980, 42, 785 CrossRef CAS.
  34. In Section 2 we have seen that in Cu(H;dGMP)+ the metal ion is overwhelmingly coordinated to the N7 site of the guanine moiety; i.e., complex formation proceeds largely via the upper pathway in Fig. 3 and therefore log kCuCu(dGMP·H)=(2.75 ± 0.23)≈ log KCuCu(H;dGMP)=(2.80 ± 0.10). If we consider the same binding mode for Cu(phen)2+ to H(dGMP)(Fig. 4, upper pathway, arrow at the left) it is interesting to note that the stability difference Δ log K*= log kCu(phen)[Cu(phen)(dGMP·H)]op– log KCuCu(H;dGMP)=(2.60 ± 0.12)–(2.80 ± 0.10)=–0.20 ± 0.16 is in perfect accord with the corresponding stability difference determined for the Cu2+/phen/xanthosine system,35 which involves binding sites of the same kind. For the Cu(bipy)2+ systems the analogous comparisons lead to the same result. These observations confirm the validity of the estimates made for the microconstants in Sections 2 and 3.
  35. Y. Kinjo, R. Tribolet, N. A. Corfù and H. Sigel, Inorg. Chem., 1989, 28, 1480 CrossRef CAS.
  36. (a) H. Sigel, Chimia, 1967, 21, 489 CAS; (b) H. Sigel, Angew. Chem., Int. Ed. Engl., 1975, 14, 394 CrossRef; (c) H. Sigel, in Coordination Chemistry-20, ed. D. Banerjea, IUPAC, Pergamon Press, Oxford and New York, 1980, pp. 27–45 Search PubMed.
  37. R. Malini-Balakrishnan, K. H. Scheller, U. K. Häring, R. Tribolet and H. Sigel, Inorg. Chem., 1985, 24, 2067 CrossRef CAS.
  38. H. Sigel, Coord. Chem. Rev., 1995, 144, 287 CrossRef CAS.
  39. H. Sigel, D. Chen, N. A. Corfù, F. Gregánň, A. Holý and M. Strašák, Helv. Chim. Acta, 1992, 75, 2634 CrossRef CAS.
  40. S. S. Massoud and H. Sigel, Inorg. Chem., 1988, 27, 1447 CrossRef CAS.
  41. J. Zhao, B. Song, N. Saha, A. Saha, F. Gregánň, M. Bastian and H. Sigel, Inorg. Chim. Acta, 1996, 250, 185 CrossRef CAS.
  42. R. B. Martin and H. Sigel, Comments Inorg. Chem., 1988, 6, 285 CrossRef CAS.
  43. H. Sigel, S. S. Massoud and R. Tribolet, J. Am. Chem. Soc., 1988, 110, 6857 CrossRef CAS.
  44. The difficulty here is that a ligand with a N binding site as closely related as possible to N7 of guanine must be chosen, yet at the same time this ligand should have no tendency for the formation of stacks (or at least only a low one). Our compromises are Im and MIm, since their stacking tendency is low.11 The acidity constants of H(Im)+ and H(MIm)+ are pKHH(Im)= 7.08 ± 0.03 and pKHH(MIm)= 7.16 ± 0.01, respectively (25 °C; I= 0.1 mol dm–3, NaNO3).
  45. K. Aoki, J. Chem. Soc., Chem. Commun., 1977, 600 RSC.
  46. W. S. Sheldrick, Z. Naturforsch., Teil B., 1983, 38, 982 Search PubMed.
  47. S. S. Massoud, R. Tribolet and H. Sigel, Eur. J. Biochem., 1990, 187, 387 CAS.
  48. (a) C. F. Naumann and H. Sigel, J. Am. Chem. Soc., 1974, 96, 2750 CrossRef CAS; (b) P. Chaudhuri and H. Sigel, J. Am. Chem. Soc., 1977, 99, 3142 CrossRef CAS; (c) E. Farkas, B. E. Fischer, R. Griesser, V. M. Rheinberger and H. Sigel, Z. Naturforsch., Teil B, 1979, 34, 208 Search PubMed.
  49. (a) P. R. Mitchell and H. Sigel, J. Am. Chem. Soc., 1978, 100, 1564 CrossRef CAS; (b) E. Dubler, U. K. Häring, K. H. Scheller, P. Baltzer and H. Sigel, Inorg. Chem., 1984, 23, 3785 CrossRef CAS.
  50. (a) H. Masuda, T. Sugimori, A. Odani and O. Yamauchi, Inorg. Chim. Acta, 1991, 180, 73 CrossRef CAS; (b) T. Sugimori, H. Masuda, N. Ohata, K. Koiwai, A. Odani and O. Yamauchi, Inorg. Chem., 1997, 36, 576 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.