A [RuII(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON–OFF luminescent chemosensor for Ni2+ and Cu2+ in water, based on an ET (energy transfer) mechanism

(Note: The full text of this document is currently only available in the PDF Version )

Fabrizio Bolletta, Ilaria Costa, Luigi Fabbrizzi, Maurizio Licchelli, Marco Montalti, Piersandro Pallavicini, Luca Prodi and Nelsi Zaccheroni


Abstract

A dioxo-tetramine ligand (1,9-diamino-3,7-diazanonane-4,6-dione ≡ dioxo-2,3,2-tet) has been appended to a RuII(bipy)3 unit. This new system, 2, is water-soluble and capable of sensing Cu2+ and Ni2+ cations thanks to the strong quenching of the Ru(bipy)3 fluorescence, which takes place when a metal cation is coordinated by the dioxo-2,3,2-tet binding unit. Coordination requires the energetically expensive deprotonation of the amide nitrogens, so that only Cu2+ and Ni2+ are able to promote it among the series of divalent first-row transition metal cations. Moreover, the complexation reaction is pH-dependent and one can distinguish between the two metal cations on working at the proper pH. The quenching mechanism has been examined by measuring the lifetime of the excited state of the ruthenium luminophore both on the metal-free and metal-complexed system and by flash photolysis experiments carried out on the complexed systems. The results clearly indicate that an energy transfer mechanism holds both for the Cu2+ and Ni2+ complex. The characterization of 2 as a water soluble ON–OFF sensor for copper and nickel has also been checked for its lowest detection limit, finding that these two metals can be detected down to a 10–7 M concentration. Moreover, also system 3, containing a dioxo-2,3,2-tet ligand and the ReI(CO)3bipy(Cl) luminophore, has been examined as another possible water-soluble ON–OFF fluorescent sensor for the same transition metal cations. Again, only Cu2+ and Ni2+ are bound with a pH-dependent equilibrium, but incomplete luminescence quenching was observed, which prevented the determination of the quenching mechanism.


References

  1. A. P. da Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515 CrossRef.
  2. (a) L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, D. Sacchi and A. Taglietti, Chem. Eur. J., 1996, 2, 75 CrossRef CAS; (b) L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi and A. Taglietti, Analyst, 1996, 121, 1763 RSC.
  3. L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti and D. Sacchi, Angew. Chem., Int. Ed. Engl., 1994, 33, 1975 CrossRef.
  4. V. Balzani, F. Barigelletti and L. De Cola, Top. Curr. Chem., 1989, 158, 31.
  5. (a) E. Kimura, S. Wada, M. Shionoya, T. Takahashi and Y. Iitaca, J. Chem. Soc., Chem. Commun., 1990, 397 RSC; (b) E. Kimura, X. Bu, M. Shionoya, S. Wada and S. Maruyama, Inorg. Chem., 1992, 31, 4542 CrossRef CAS; (c) S. Rawle, P. Moore and N. Alcock, J. Chem. Soc. Chem. Commun., 1992, 684 RSC.
  6. K. Nakamaru, Bull. Chem. Soc. Jpn., 1982, 55, 2697 CAS.
  7. A. Credi and L. Prodi, Spectrochim. Acta, Part A, 1998, 54, 159 CrossRef.
  8. (a) L. Flamigni, J. Phys. Chem., 1992, 96, 3331 CrossRef CAS; (b) L. Flamigni, J. Chem. Soc., Faraday Trans., 1994, 90, 2331 RSC.
  9. P. Moore, S. C. Rawle and N. W. Alcock, J. Chem. Soc., Chem. Commun., 1992, 684 RSC.
  10. M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1979, 325 RSC.
  11. H. A. O. Hill and K. A. Raspin, J. Chem. Soc. (A), 1968, 3036 RSC.
  12. G. De Santis, M. Di Casa, L. Fabbrizzi, M. Licchelli, C. Mangano, P. Pallavicini, A. Perotti, A. Poggi, D. Sacchi and A. Taglietti, in Transition Metals in Supramolecular Chemistry, NATO-ASI Series, ed. L. Fabbrizzi and A. Poggi, Kluwer Academic Publishers, Dordrecht, 1996 Search PubMed.
  13. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewski, Coord. Chem. Rev., 1988, 84, 85 CrossRef CAS.
  14. J. V. Caspar and T. J. Mejer, Inorg. Chem., 1983, 22, 2444 CrossRef CAS For the lack of electron transfer processes between aliphatic amines and Ru polypyridine complexes, see R. Ballardini, G. Varani, M. T. Indelli, F. Scandola and V. Balzani, J. Am. Chem. Soc., 1978, 100, 7219 Search PubMed.
  15. G. L. Gaines, III, M. P. O'Neil, W. A. Svec, M. P. Niemczyk and M. R. Wasielewski, J. Am. Chem. Soc., 1990, 113, 719.
  16. Differently from transition metal cations, the d10 Zn2+ cation is not usually capable of luminescence quenching17 and the invariability ofIf vs. pH in the presence of 1 eq. of Zn2+ cannot in principle exclude its complexation; however, competition experiments carried out with 1 eq. of 2, one eq. of Ni2+ or Cu2+ and a 50 eq. excess of Zn2+ rule out this possibility (If vs. pH profiles are found to be identical to those found in the absence of Zn2+), in agreement with literature data10 that exclude complexation of Zn2+ by related ligands.
  17. E. U. Akkaya, M. E. Huston and A. W. Czarnik, J. Am. Chem. Soc., 1990, 112, 3590 CrossRef CAS.
  18. (a) I. Costa, L. Fabbrizzi, P. Pallavicini, A. Poggi and A. Zani, Inorg. Chim. Acta, 1998, 275–276, 117 CrossRef CAS; (b) Y. Shen and P. Sullivan, Inorg. Chem., 1995, 34, 6235 CrossRef CAS.
  19. K. C. Schanze, D. B. MacQueen, T. A. Perkins and L. Cabana, Coord. Chem. Rev., 1993, 122, 63 CrossRef CAS.
  20. G. A. Reitz, J. N. Demas, B. A. DeGraff and E. M. Stephens, J. Am. Chem. Soc., 1988, 110, 5051 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.