The first systematic stability study of mononuclear and dinuclear iron(II) and iron(III) complexes incorporating a dinucleating macrocyclic ligand in aqueous solution[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Zheng Wang, Arthur E. Martell, Ramunas J. Motekaitis and Joseph Reibenspies


Abstract

The dinucleating 24-membered hexaazadiphenol macrocyclic ligand 15,31-dimethyl-3,11,19,27,33,35-hexaazapentacyclo[27.3.1.1.[hair space]5,91.[hair space]13,171.[hair space]21,25]-hexatriaconta-5,7,9(33),13,15,17(34),21,23,25(35),29,31,1(36)-dodecaene-34,36-diol ([24]RBPyBC), prepared by the NaBH4 reduction of the Schiff base obtained from the [2 + 2] condensation between 2,6-diformylpyridine and 2,6-bis(aminomethyl)-p-cresol, forms a variety of anionic and cationic species in aqueous solution. The structure of ([24]RBPyBC)·4HCl·6CH3OH was determined by X-ray crystallographic methods. The ligand maintains dinuclear integrity for both iron(II,II) and iron(III, III) states, while facilitating the formation of bridging µ-phenolate diiron cores. Potentiometric equilibrium studies indicate that a variety of protonated, mononuclear and dinuclear iron(II) and iron(III) complexes form through p[H] 2 to 11 in aqueous solution. The protonation constants of the ligand and all associated stability constants of the 1∶1, 1∶2 [ligand:iron(II) or iron(III)], and 1∶1∶1 [ligand∶iron(II)∶iron(III)] complexes were determined in KCl supporting electrolyte (0.100 M) at 25.0 °C. The mechanisms of the formation of dinuclear iron(II), iron(III) and the mixed-valence iron(II,III) complexes are described.


References

  1. (a) J. B. Vincent, G. L. Olivier-Lilley and B. A. Averill, Chem. Rev., 1990, 90, 1447 CrossRef CAS; (b) J. D. Lipscomb, Annu. Rev., Microbiol., 1994, 48, 371 CrossRef CAS.
  2. (a) R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev., 1996, 96, 2239 CrossRef CAS; (b) A. L. Feig and S. J. Lippard, Chem. Rev., 1994, 94, 759 CrossRef CAS; (c) K. D. Karlin, Science, 1993, 261, 701 CAS.
  3. (a) A. Stassinopoulos, S. Mukerjee and J. P. Caradonna, Mechanistic Bioinorganic Chemistry, Plenum Press, New York, 1995, p. 84 Search PubMed; (b) V. McKee, Adv. Inorg. Chem., 1993, 40, 323.
  4. (a) W. H. Armstrong, A. Spool, G. C. Papaefthymiou, R. B. Frankel and S. J. Lippard, J. Am. Chem. Soc., 1984, 106, 3653 CrossRef CAS; (b) K. Wieghardt, K. Pohl and W. Gebert, Angew. Chem., Int. Ed. Engl., 1983, 22, 727 CrossRef; (c) S. Menage, Y. Zhang, M. P. Hendrich and L. Que, Jr., J. Am. Chem. Soc., 1992, 114, 7786 CrossRef CAS; (d) N. Kitajima, H. Fukui and H. Moro-oka, J. Chem. Soc., Chem. Commun., 1988, 485 RSC.
  5. (a) A. S. Borovik and L. Que, Jr., J. Am. Chem. Soc., 1998, 110, 2345; (b) V. D. Campbell, E. J. Parsons and W. T. Pennington, Inorg. Chem., 1993, 32, 1773 CrossRef CAS; (c) M. Suzuki, A. Uehara, H. Oshio, K. Endo, M. Yanaga, S. Kida and K. Saito, Bull. Chem. Soc. Jpn., 1987, 60, 3547 CAS.
  6. (a) C. L. Spiro, S. L. Lambert, T. J. Smith, E. N. Duesler, R. R. Gagne and D. N. Hendrickson, Inorg. Chem., 1981, 20, 1229 CrossRef CAS; (b) H. S. Mountford, D. B. MacQueen, A. Li, J. W. Otvos, M. Calvin, R. B. Frankel and L. O. Spreer, Inorg. Chem., 1994, 33, 1748 CrossRef CAS; (c) R. J. Motekaitis, W. B. Utley and A. E. Martell, Inorg. Chim. Acta, 1993, 212, 15 CrossRef CAS.
  7. (a) S. K. Mandal, L. K. Thompson, K. Nag, J. P. Charland and E. J. Gabe, Inorg. Chem., 1987, 26, 1391 CrossRef CAS; (b) R. Das, K. K. Nanda, K. Venkatsubramanian, P. Paul and K. Nag, J. Chem. Soc., Dalton Trans., 1992, 1253 RSC; (c) K. K. Nanda, S. K. Dutta, S. Baitalik, K. Venkatsubramanian and K. Nag, J. Chem. Soc., Dalton Trans., 1995, 1239 RSC; (d) S. Dutta, R. Werner, S. Mohanta Florke, K. K. Nanda, W. Haase and K. Nag, Inorg. Chem., 1996, 35, 2292 CrossRef CAS; (e) K. K. Nanda, L. K. Thompson, J. N. Bridson and K. Nag, J. Chem. Soc., Chem. Commun., 1994, 1337 RSC.
  8. R. M. Smith, A. E. Martell and R. J. Motekaitis, Critical Stability Constants Database, Version 4, NIST, Gaithersburg, MD, USA, 1993 Search PubMed.
  9. Z. Wang, J. Reibenspies and A. E. Martell, Inorg. Chem., 1997, 36, 629 CrossRef CAS.
  10. The complexity of the ligands discussed here requires that nomenclature now in use be revised (refer to N. F. Curtis, Coord. Chem. Rev., 1968, 3, 3 and J. C. Dabrowiak, P. H. MerrellD. H. Busch, Inorg. Chem., 1982, 11, 1979; and compare reference 7 and reference 9). In order to represent these and more complicated ligands by convenient abbreviations we are recommending a new a bbreviation system based in part on the starting materials of bis(primary amines) and dialdehydes used for preparation of macrocyclic ligands. In this system the internal ring size of the macrocyclic ligand is indicated by a number in brackets. In the absence of any unsaturated Schiff base bonds the heading “R” is adopted to indicate that all Schiff base bonds are reduced. Substituents, heteroatoms and azomethine linkages may be indicated with or without positions depending on the information that needs to be conveyed. For example the abbreviation for ligand 20,41-dimethyl-3,16,24,27,43,44,46,47-octaazaheptacyclo-[37.3.1.1.5,91.10,141.18,221.26.301.31,35]-octatetraconta-5,7,9(43)12,12, 14(44),18,20,22(45),26,28,30(46)31,33,35(47)39,41,1(48)-octa-decaene-45,48-diol (see Fig. 1) then becomes [30]RBBPyBC (B = bis, BPy = bipyridine, and C = cresol). The abbreviation for ligand 15,31-dimethyl-3,11,19,27,33,35-hexaazapentacyclo-[27.3.1.1.5,91.13,171.21,25]-hexatriconta-3,5,7,9(33),10,13,15,17(34),19, 21,23,25(35),26,29,31,1(36)-hexacaene-34,36-diol becomes [24]-1,6,13,18-tetraSb-BPyBC (Sb = Schiff base). These represent relatively complex abbreviations and often could be shortened further, for example, [24]BPyBC for [24]-1,6,13,18-tetraSb-BPyBC. Since the subject of this paper deals almost exclusively with metal complexes of 15,31-dimethyl-3,11,19,27,33,35-hexaazapentacyclo-[27.3.1.1.5,91.13,171.21,25]-hexatriaconta-5,7,9(33),13,15,17(34),21,23, 25(35),29,31,1(36)-dodecaene-34,36-diol, the short abbreviation ([24]RBPYBC or the dianion, LIV2–) is used. Our system is designed to use the simplest abbreviation that contains the necessary structural information in the context of the discussion that is at hand. While these abbreviations are still more cumbersome than we might like, they are short enough to use in tabulated entries and one can derive from them much pertinent structural information Search PubMed.
  11. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, Reinhold, New York, 1960, p. 290 Search PubMed.
  12. (a) F. L'Eplattenier, I. Murase and A. E. Martell, J. Am. Chem. Soc., 1967, 89, 837 CrossRef CAS; (b) R. J. Motekaitis, A. E. Martell and M. J. Welch, Inorg. Chem., 1990, 29, 1463 CrossRef CAS; (c) M. G. Basallote and A. E. Martell, Inorg. Chem., 1988, 27, 4219 CrossRef.
  13. M. Suzuki, H. Oshio, A. Uehara, K. Endo, M. Yanaga, S. Kida and K. Saito, Bull. Chem. Soc. Jpn., 1988, 61, 3907 CAS.
  14. Z. Wang, A. E. Martell and R. J. Motekaitis, Chem. Commun., 1998, 1523 RSC.
  15. A. E. Martell and R. J. Motekaitis, The Determination and Use of Stability Constants, VCH Publishers, New York, 2nd edn., 1992 Search PubMed.
  16. G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Solutions, University of Göttingen, Germany, 1986.
  17. G. M. Sheldrick, SHELXS 93, Program for Crystal Structure Solutions, University of Göttingen, Germany, 1993.
  18. T. Hahn and D. Reidel, International Tables for X-ray Crystallo-graphy, Vol. C, distributed by Kluwer Academic Publishers, Dordrecht, 1992 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.