Luminescence properties of salts of the [Pt(4′Ph-terpy)Cl]+ chromophore: crystal structure of the red form of [Pt(4′Ph-terpy)Cl]BF4 (4′Ph-terpy = 4′-phenyl-2,2′∶6′,2″-terpyridine)

(Note: The full text of this document is currently only available in the PDF Version )

Riaan Büchner, Corey T. Cunningham, John S. Field, Raymond J. Haines, David R. McMillin and Grant C. Summerton


Abstract

The complexes [Pt(4′Ph-terpy)Cl]A (4′Ph-terpy = 4′-phenyl-2,2′:6′,2″-terpyridine; A = SbF6, CF3SO3, or BF4) have been prepared by reaction of [Pt(PhCN)2Cl2] with the appropriate silver salt followed by addition of the 4′-phenyl-2,2′:6′,2″-terpyridyl ligand. The hexafluoroantimonate salt is yellow but, depending on the method of crystallisation, the triflate and tetrafluoroborate salts can be isolated in two forms, one yellow and the other red, the red forms only being stable at low temperatures. The crystal structure of red [Pt(4′Ph-terpy)Cl]BF4·CH3CN has been determined at 153 K by X-ray diffraction methods. The [Pt(4′Ph-terpy)Cl]+ cations are stacked face-to-face in an extended chain of stepped tetramers, with essentially equal Pt[hair space][hair space]· · ·[hair space][hair space]Pt distances of ca. 3.3 Å within a tetramer and a Pt[hair space][hair space]· · ·[hair space][hair space]Pt distance of 4.680 Å between successive tetramers. The spectroscopic and solid state emission properties of the salts have been recorded. The yellow salts are characterised by emission from an isolated chromophore in an excited state that reflects the admixture of 3MLCT (MLCT = metal-to-ligand charge-transfer) and 3IL (IL = intraligand) character. This assignment is supported by the presence of vibrational structure in the emission band as well as by a lifetime of ca. 1 µs for the emission. The red [Pt(4′Ph-terpy)Cl]BF4·CH3CN salt, in contrast, exhibits emission from a 3MMLCT (MMLCT = metal–metal–ligand charge-transfer) state as a consequence of the strong platinum dz2–dz2 orbital interactions. This assignment is consistent with the observation of a narrow, structureless and asymmetric band as well as an emission lifetime of ca. 0.1 µs. There is a systematic and substantial red-shift of 75 nm in the emission maximum on cooling the red salt from 280 to 80 K, an unexpected result since bathochromic shifts of this kind are normally associated with stacked structures with a uniform Pt[hair space][hair space]· · ·[hair space][hair space]Pt separation. The above assignments are further supported by measurements of the emission spectra of solutions of varying concentrations of the tetrafluoroborate salt in a dimethylformamide–methanol–ethanol glass at 77 K and by lifetime measurements. Interestingly, pressure in the form of grinding the salts modifies their luminescent properties. Thus, crushed samples of the yellow hexafluoroantimonate salt exhibit multiple emission at 80 K from both the 3MMLCT and the mixed parentage 3MLCT/3IL excited states, whereas at room temperature the emission spectrum is dominated by a broad band centred at 644 nm associated entirely with the 3MMLCT emission.


References

  1. V. H. Houlding and V. M. Miskowski, Coord. Chem. Rev., 1991, 111, 145 CrossRef CAS.
  2. T. K. Aldridge, E. M. Stacey and D. R. McMillin, Inorg. Chem., 1994, 33, 722 CrossRef CAS.
  3. H.-K. Yip, L.-K. Cheung, K.-K. Cheung and C.-M. Che, J. Chem. Soc., Dalton Trans., 1993, 2933 RSC.
  4. V. M. Miskowski and V. H. Houlding, Inorg. Chem., 1991, 30, 4446 CrossRef CAS.
  5. J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P. Schaefer and H. B. Gray, Inorg. Chem., 1995, 34, 4591 CrossRef CAS.
  6. R. Büchner, J. S. Field, R. J. Haines, C. T. Cunningham and D. R. McMillin, Inorg. Chem., 1997, 37, 3952 CrossRef.
  7. E. C. Constable, J. Lewis, M. C. Liptrot and P. R. Raithby, Inorg. Chim. Acta, 1990, 178, 47 CrossRef CAS.
  8. R. S. Osborn and D. Rogers, J. Chem. Soc., Dalton Trans., 1974, 1002 RSC; E. Bielli, P. M. Gidney, R. D. Gilliard and B. T. Heaton, ibid., 1974, 2133 Search PubMed.
  9. K. W. Jennette, J. T. Gill, J. A. Sadownick and S. J. Lippard, J. Am. Chem. Soc., 1976, 98, 6159 CrossRef CAS; M. Akiba, K. Umakoshi and Y. Sasaki, Chem. Lett., 1995, 607 CAS; J. A. Bailey, V. M. Miskowski and H. B. Gray, Acta Crystallogr., Sect. C, 1992, 48, 1420 CrossRef.
  10. R. Büchner, PhD Thesis, University of Natal, Pietermaritzburg, 1996.
  11. D. P. Freyburg, J. L. Robins, K. N. Raymond and J. C. Smart, J. Am. Chem. Soc., 1979, 101, 892 CrossRef CAS.
  12. W. B. Connick, R. E. Marsh, W. P. Schaefer and H. B. Gray, Inorg. Chem., 1997, 36, 913 CrossRef CAS.
  13. V. M. Miskowski, V. H. Houlding, C.-M. Che and Y. Wang, Inorg. Chem., 1993, 32, 2518 CrossRef CAS.
  14. J. A. Bailey, V. M. Miskowski and H. B. Gray, Inorg. Chem., 1993, 32, 369 CrossRef CAS.
  15. D. K. Crites, C. T. Cunningham and D. R. McMillin, Inorg. Chim. Acta, 1998, 273, 346 CrossRef CAS.
  16. M. Weiser-Wallfahrer and G. Z. Gliemann, Z. Naturforsch., Teil B, 1990, 45, 652 CAS.
  17. W. B. Connick, L. M. Henling, R. E. Marsh and H. B. Gray, Inorg. Chem., 1996, 35, 6261 CrossRef CAS.
  18. D. S. Martin, in Extended Interactions between Metal Ions, ed. L. V. Interannte, ACS Symp. Ser. 5, American Chemical Society, Washington, DC, 1974, p. 254 Search PubMed.
  19. V. M. Miskowski and V. H. Houlding, Inorg. Chem., 1989, 28, 1529 CrossRef CAS.
  20. R. A. Rader, D. R. McMillin, M. T. Buckner, T. G. Matthews, D. J. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon and R. E. Lyttle, J. Am. Chem. Soc., 1981, 102, 5906 CrossRef.
  21. G. Blasse and B. C. Grabmeier, in Luminescent Materials, Springer-Verlag, New York, 1994, ch. 3 Search PubMed.
  22. L. Carlsen, H. Egsgaard and J. R. Anderson, Anal. Chem., 1979, 51, 1593 CrossRef CAS.
  23. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, New York, 2nd edn., 1980 Search PubMed.
  24. F. Liu, K. L. Cunningham, W. Uphues, G. W. Fink, J. Schmolt and D. R. McMillin, Inorg. Chem., 1995, 34, 2015 CrossRef CAS.
  25. G. M. Sheldrick, SADABS, A program for absorption corrections with the Siemens SMART system, University of Göttingen, 1996.
  26. G. M. Sheldrick, SHELX-93, A program for crystal structure refinement, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.