Supramolecular networks via hydrogen bonding and stacking interactions for adenosine 5′-diphosphate. Synthesis and crystal structure of diaqua(2,2′∶6′,2″-terpyridine)copper(II) [adenosine 5′-diphosphato(3–)](2,2′∶6′,2″-terpyridine)cuprate(II) adenosine 5′-diphosphate(1–) hexadecahydrate and density functional geometry optimization analysis of copper(II)- and zinc(II)-pyrophosphate complexes

(Note: The full text of this document is currently only available in the PDF Version )

Renzo Cini and Claudia Pifferi


Abstract

Single crystal X-ray diffraction showed that crystals of [Cu(TERPY)(H2O)2][Cu(TERPY)(ADP)][H2ADP]·16H2O [TERPY = 2,2′∶6′∶2″-terpyridine; ADP = adenosine 5′-diphosphate(3-)] belong to the triclinic system, space group P1 (no. 1) and contain free nucleotide molecules, nucleotide molecules linked to the metal centre of Cu(TERPY)2+ units, [Cu(TERPY)(H2O)2]2+ complexes and free water molecules. The molecules of free nucleotide, [Cu(TERPY)(ADP)] and [Cu(TERPY)(H2O)2]2+ >are clustered together and interact via the phosphate moieties and the >Cu(H2O)22+ group. An extensive web of hydrogen bonds holds the three molecules oriented in such a way that the most hydrophobic regions (TERPY) occupy the perimeter of a pocket which contains the pyrophosphate systems. Stacking interactions between the adenine rings and the TERPY ligands stabilize the supramolecular aggregates. Owing to the high content of cocrystallized water molecules the nucleotides have an environment similar to the aqueous phase. The analysis of the Fourier-difference map and of the geometrical parameters of the molecules is consistent with a model in which the free nucleotide molecule is protonated at N(1) and phosphate(β), whereas the copper-bound nucleotide molecule is fully deprotonated as regards the N(1) and phosphate oxygen atoms. The phosphate(β) of the copper-bound nucleotide behaves as a better ligand than phosphate(α) [Cu–O, 1.919(8) and 2.244(10) Å, respectively]. The chelation to the metal of the pyrophosphate moiety causes a lengthening of 0.040(9) Å of the P(β)–OP bond with respect to P(α)–OP. A density functional analysis at the B3LYP/LANL2DZ level was carried out on P2O74–, HP2O73–, [Cu(O,O-PO4)], [Cu{O(α),O(β)-P2O7}]2–, [Zn{O(α),O(β)-P2O7}[hair space]]2–, [Zn{O(α),O(β)-HP2O7}(H2O)(OH)]2–, [Cu{O(α),O(β)-HP2O7}(NH3)3] and [Zn{O(α),O(β)-HP2O7}(NH3)2]·NH3. The computational procedure was able to reproduce the overall conformation (bond and torsion angles) of the pyrophosphate group as well as the structure of the co-ordination ring found in the solid state. The computed fully optimized structure for [Cu{O(α),O(β)-P2O7}]2– has a Cu–O bond distance of 1.837 Å and the co-ordination ring has a boat-envelope conformation, in agreement with the experimental structure found for the metal-bound nucleotide molecule.


References

  1. (a) K. Aoki, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32, ch. 4 Search PubMed ; (b) L. Stryer, Biochemistry, W. H. Freeman and Co., New York, 1991 Search PubMed ; (c) M. Ronaghi, M. Uhlén and P. Nyrén, Science, 1998, 281, 363 CrossRef CAS ; (d) D. A. Suhy and T. V. O'Halloran, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32, ch. 16 Search PubMed ; (e) T. Steitz, S. J. Smerdon, J. Jäger and C. M. Joyce, Science, 1994, 266, 2022 CAS ; (f) J. P. Whitehead and S. J. Lippard, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32, ch. 20 Search PubMed ; (g) R. K. O. Sigel, E. Freisinger and B. Lippert, Chem. Commun., 1998, 219 RSC ; (h) M. Sabat, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32, ch. 15 Search PubMed ; (i) M. J. Bloemink, J. P. Dorenbos, R. J. Heetebrij, B. K. Keppler and J. Reedijk, Inorg. Chem., 1994, 33, 186 ; (j) N. Farrell, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32, ch. 18 Search PubMed ; (k) M. Coluccia, A. Nassi, F. Loseto, A. Boccarelli, M. A. Mariggio, D. Giordano, F. P. Intini and G. Natile, J. Med. Chem., 1993, 36, 510 CrossRef CAS ; (l) T. P. Kline, L. G. Marzilli, D. Live and G. Zon, J. Am. Chem. Soc., 1989, 111, 7057 CrossRef CAS ; (m) B. Song, A. Holý and H. Sigel, Gazz. Chim. Ital., 1994, 124, 387 CAS ; (n) G. B. Helion, Angew. Chem., 1989, 101, 893 .
  2. J. Löwe and L. A. Amos, Nature (London), 1998, 391, 203 CrossRef CAS .
  3. G. J. Davies, S. J. Gamblin, J. A. Littlechild, Z. Dauter, K. S. Wilson and H. C. Watson, Acta Crystallogr. Sect. D, 1994, 50, 202 CrossRef .
  4. S. Morera, I. Lascu, C. Dumas, G. LeBras, P. Briozzo, M. Véron and J. Janin, Biochemistry, 1994, 33, 459 CrossRef CAS .
  5. J.-M. Lehn, Supramolecular Chemistry; Concepts and Perspectives, VCH, Weinheim, 1995 Search PubMed .
  6. J.-M. Lehn, Science, 1993, 260, 1762 CrossRef CAS .
  7. S. H. Gellman, (Guest editor)Chem. Rev., 1997, 97 Search PubMed .
  8. L. J. Barbour, G. W. Orr and J. L. Atwood, Nature (London), 1998, 393, 671 CrossRef .
  9. J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97, 1303 CrossRef CAS .
  10. A. Cavaglioni and R. Cini, J. Chem. Soc., Dalton Trans., 1997, 1149 RSC .
  11. R. Cini, R. Bozzi, A. Karaulov, M. B. Hursthouse, A. M. Calafat and L. G. Marzilli, J. Chem. Soc., Chem. Commun., 1993, 889 RSC .
  12. R. Cini, M. C. Burla, A. Nunzi, G. P. Polidori and P. F. Zanazzi, J. Chem. Soc., Dalton Trans., 1984, 2467 RSC .
  13. P. Orioli, R. Cini, D. Donati and S. Mangani, Nature (London), 1980, 283, 691 CAS .
  14. R. Cini and R. Bozzi, J. Inorg. Biochem., 1996, 61, 109 CrossRef CAS .
  15. G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986 .
  16. G. M. Sheldrick, SHELXL 93, Program for Refinement of Crystal Structure, University of Göttingen, 1993 .
  17. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef .
  18. M. Nardelli, PARST 95, A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analyses, University of Parma, 1995 .
  19. L. Zsolnai, ZORTEP, An Interactive ORTEP program, University of Heidelberg, 1994 .
  20. L. J. Farrugia, ORTEP 3 for Windows, Version 1.01 Beta, University of Glasgow, 1997 .
  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995 .
  22. A. D. Becke, J. Chem. Phys., 1998, 88, 1053 CrossRef ; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 82, 785 CrossRef .
  23. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299 CrossRef CAS .
  24. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358 CrossRef CAS  and refs. therein.
  25. (a) H. Saint-Martin, L. E. Ruiz-Vicent, A. Ramírez-Solís and I. Ortega-Blake, J. Am. Chem. Soc., 1996, 118, 12167 CrossRef CAS ; (b) A. J. H. Wachters, J. Chem. Phys., 1970, 52, 1033 CrossRef CAS .
  26. P. Swaminathan and M. Sundaralingam, Acta Crystallogr., Sect. B, 1980, 36, 2590 CrossRef .
  27. Z. Shakked, M. A. Viswamitra and O. Kennard, Biochemistry, 1980, 19, 2567 CrossRef CAS .
  28. M. Sabat, R. Cini, T. Haromy and M. Sundaralingam, Biochemistry, 1985, 24, 7827 CrossRef CAS .
  29. W. Sanger, Principles of Nucleic Acid Structure, Springer, New York, 1984 Search PubMed .
  30. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354 CrossRef CAS .
  31. R. Cini, Comments Inorg. Chem., 1992, 13, 1 CAS .
  32. C. Singh, Acta Crystallogr., 1965, 19, 861 CrossRef CAS .
  33. P. Prusiner and M. Sundaralingam, Acta Crystallogr., Sect. B, 1972, 28, 2148 CrossRef CAS .
  34. C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94, 8205 CrossRef CAS .
  35. O. Kennard, N. W. Isaacs, W. D. S. Motherwell, J. C. Coppola, D. L. Wampler, A. C. Larson and D. G. Watson, Proc. R. Soc., London, Ser. A, 1971, 325, 401 CAS .
  36. J. V. Folgado, R. Ibáñez, E. Coronado, D. Beltrán, J. M. Savariault and J. Galy, Inorg. Chem., 1988, 27, 19 CrossRef CAS .
  37. M. C. Muñoz, R. Ruiz, M. Julve, F. Lloret and X. Solans, Acta Crystallogr., Sect. C, 1993, 49, 674 CrossRef .
  38. R. Cini and L. G. Marzilli, Inorg. Chem., 1988, 27, 1855 CrossRef CAS .
  39. A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford 1975 Search PubMed .
  40. (a) D. Kobashi, S. Kohara, J. Yamakawa and A. Kawahara, Acta Crystallogr., Sect. C, 1997, 53, 1523 CrossRef ; (b) R. Masse, J. C. Guitel and A. Durif, Mater. Res. Bull., 1979, 14, 337 CAS ; (c) M. T. Averbruch-Pouchot and A. Durif, Z. Kristallogr., 1987, 180, 195 .
  41. R. Cini, D. G. Musaev, L. G. Marzilli and K. Morokuma, J. Mol. Struct. (Theochem.), 1997, 392, 55 CrossRef .
  42. B. Ma, C. Meredith and H. F. Schaefer III, J. Phys. Chem., 1995, 99, 3815 CrossRef CAS .
  43. H. Sigel and B. Song, in Metal Ions in Biological Systems, eds. A. Sigel and H. Sigel, Marcel Dekker, Basel, 1996, vol. 32 and refs. therein Search PubMed .
  44. A. Bondi, J. Phys. Chem., 1964, 68, 441 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.