Combined versus individual labilising effects of H+, Na+ and nucleophile on catalysed substitution reactions: studies on [Fe4S4X4]2– (X = Cl or PhS)†

(Note: The full text of this document is currently only available in the PDF Version )

Richard A. Henderson


Abstract

The reactions between [Fe4S4X4]2– (X = PhS or Cl) and Et2NCS2 to form [Fe4S4X2(S2CNEt2)2]2– have been studied in MeCN. The kinetics are consistent with a dissociative mechanism under all conditions. The addition of Na+ led to an increase in rate for [Fe4S4(SPh)4]2– and analysis of the kinetics indicates that a single Na+ binds and labilises the cluster. Comparison is drawn with the established effect of H+ on the lability of this cluster. The presence of a thiolate ligand is necessary to bind Na+ since the reaction between [Fe4S4Cl4]2– and Et2NCS2 is unaffected by the addition of Na+. The addition of acid to [{Fe4S4(SPh)4}Na] further accelerates the rate of substitution. Quantitative analysis shows that the combined labilising effect of Na+ and H+ is no more than that expected from the individual labilisation afforded by each cation. Similar analyses show the same is true for H+ and nucleophile in acid-catalysed associative substitution mechanisms, and two H+ in the acid-catalysed dissociative mechanisms of Fe–S-based clusters. The generality of these observations is discussed.


References

  1. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCH, Weinheim, 2nd edn., 1991, ch. 1 and 4 Search PubMed.
  2. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1993, 1467 RSC.
  3. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1993, 1473 RSC.
  4. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Chem. Commun., 1994, 377 RSC.
  5. K. L. C. Grönberg and R. A. Henderson, J. Chem. Soc., Dalton Trans., 1996, 3667 RSC.
  6. R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1998, 1731 RSC.
  7. V. R. Almeida, C. A. Gormal, K. L. C. Grönberg, R. A. Henderson, K. E. Oglieve and B. E. Smith, Inorg. Chim. Acta, submitted Search PubMed.
  8. K. L. C. Grönberg, R. A. Henderson and K. E. Oglieve, J. Chem. Soc., Dalton Trans., 1998, 3093 RSC.
  9. D. Sellmann and J. Sutter, Acc. Chem. Res., 1997, 30, 460 CrossRef CAS and refs. therein.
  10. B. A. Averill, T. Herskovitz, R. H. Holm and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 3523 CrossRef CAS.
  11. G. B. Wong, M. A. Bobrik and R. H. Holm, Inorg. Chem., 1978, 17, 578 CrossRef CAS.
  12. M. G. Kanatzidis, D. Coucouvanis, A. Simopoulos, A. Kostikas and V. Papaefthymiou, J. Am. Chem. Soc., 1985, 107, 4925 CrossRef CAS.
  13. Ref. 1, p. 24.
  14. H. Strasdeit, B. Krebs and G. Henkel, Inorg. Chem., 1984, 23, 1816 CrossRef CAS.
  15. J.-F. You, B. S. Snyder, G. C. Papefthymiou and R. H. Holm, J. Am. Chem. Soc., 1990, 112, 1067 CrossRef CAS.
  16. J.-F. You, G. C. Papefthymiou and R. H. Holm, J. Am. Chem. Soc., 1992, 114, 2697 CrossRef CAS.
  17. J. Huang, C. Goh and R. H. Holm, Inorg. Chem., 1997, 36, 356 CrossRef.
  18. K. Izutsu, Acid–Base Dissociation Constants in Dipolar Aprotic Solvents, Blackwell Scientific, Oxford, 1990, p. 17 Search PubMed.
  19. B. V. Pamphilis, B. A. Averill, T. Herskovitz, L. Que, jun. and R. H. Holm, J. Am. Chem. Soc., 1974, 96, 4159 CrossRef CAS.
  20. J. R. Dilworth, R. A. Henderson, P. Dahlstrom, T. Nicholson and J. A. Zubieta, J. Chem. Soc., Dalton Trans., 1987, 529 RSC.
  21. R. A. Henderson, J. Chem. Soc., Dalton Trans., 1982, 917 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.