The reaction of trimethylsilyldiazomethane with complexes of the type [PtX(CH3)(diphosphine)] (X = Cl, Br, I). Some observations on β-hydrogen migrations in PtCHRCH3 species and organoplatinum(II)-catalysts for alkene formation from trimethylsilyldiazomethane

(Note: The full text of this document is currently only available in the PDF Version )

Paola Bergamini, Emiliana Costa, Christian Ganter, A. Guy Orpen and Paul G. Pringle


Abstract

Treatment of [PtX(CH3)(diphos)] 1 {X = Cl, Br, I; diphos = (4R,5R)-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane (diop), (2S,4S[hair space])-2,4-bis(diphenylphosphino)pentane (skewphos), (2S,3S[hair space])-2,3-bis(diphenylphosphino)butane (chiraphos)} with N2CHSiMe3 gives two series of products: “α-products“, [PtX(CH2SiMe3)(diphos)] 2 and “β-products“ [PtX(CH2CH2SiMe3)(diphos)] 3. Which product is formed and their stability depends on the ancillary ligands X and diphos. Treatment of [PtCl(CH3)(diop)] 1a with an excess of N2CHSiMe3 gives the α-product [PtCl(CH2SiMe3)(diop)] 2a in high yield. The structure of 2a was confirmed by X-ray crystallography. Under similar conditions [PtCl(CH3)(skewphos)] 1d reacts with an excess of N2CHSiMe3 to give the β-product [PtCl(CH2CH2SiMe3)(skewphos)] 3d as shown unambiguously by a combination of 1H-COSY and 31P NMR spectroscopy. It is established that the reaction sequence is 1 → 3 → 2 and the conversion of 3 → 2 is via a β-hydrogen migration and elimination of CH2[double bond, length half m-dash]CHSiMe3. The stability of 3 with respect to β-hydrogen elimination is in the order Cl > Br > I and chiraphos > skewphos > diop; a mechanism is proposed based on five-coordinate platinum(II) intermediates to rationalize these trends. The reactions of [PtX(CH3)(diphos)] with N2CHSiMe3 and N2CHCOOEt are contrasted and it is concluded that in PtCHRMe species, a SiMe3 group facilitates β-hydrogen migration while a CO2Et group retards β-hydrogen migration. The complexes 2 are catalysts for the conversion of N2CHSiMe3 to Me3SiCH=CHSiMe3.


References

  1. J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA 1987 Search PubMed.
  2. P. Bergamini, E. Costa, A. G. Orpen, P. G. Pringle and M. B. Smith, Organometallics, 1995, 14, 3178 CrossRef CAS.
  3. T. Kégl, L. Kollár and L. Radics, Inorg. Chim. Acta, 1997, 267, 249 CrossRef.
  4. B. Wozniak, J. D. Ruddick and G. Wilkinson, J. Chem. Soc. A, 1971, 3116 RSC.
  5. G. Alibrandi, L. M. Scolaro, D. Minniti and R. Romeo, Inorg. Chem., 1990, 29, 3467 CrossRef CAS and refs. therein.
  6. R. Kapadia, J. B. Pedley and G. B. Young, Inorg. Chim. Acta, 1997, 265, 235 CrossRef CAS.
  7. H. E. Bryndza, L. K. Fong, R. A. Paciello, W. Tam and J. E. Bercaw, J. Am. Chem. Soc., 1987, 109, 1444 CrossRef CAS and refs. therein.
  8. (a) G. M. Whitesides, J. F. Gaash and E. R. Stedronsky, J. Am. Chem. Soc., 1972, 94, 5258 CrossRef CAS; (b) P. J. Davidson, M. F. Lappert and R. Pearce, Chem. Rev., 1996, 219; (c) H. E. Bryndza, J. C. Calabrese, M. Marsi, D. C. Roe, W. Tam and J. E. Bercaw, J. Am. Chem. Soc., 1986, 108, 4805 CrossRef CAS; (d) G. Alibrandi, D. Minniti, R. Romeo and P. Vitarelli, Inorg. Chim. Acta, 1984, 81, L23 CrossRef CAS; (e) G. Alibrandi, D. Minniti, R. Romeo, G. Cum and R. Gallo, J. Organomet. Chem., 1985, 291, 133 CrossRef CAS.
  9. (a) T. J. McCarthy, R. G. Nuzzo and G. M. Whitesides, J. Am. Chem. Soc., 1981, 103, 1676 CrossRef CAS; (b) G. Alibrandi, M. Cusumano, D. Minniti, L. M. Scolaro and R. Romeo, Inorg. Chem., 1989, 28, 342 CrossRef CAS; (c) R. Romeo, G. Alibrandi and L. M. Scolaro, Inorg. Chem., 1993, 32, 4688 CrossRef CAS.
  10. W. Colvin, Chem. Soc. Rev., 1978, 7, 15 RSC.
  11. (a) R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, Inorg. Chem., 1980, 19, 1356 CrossRef CAS; (b) F. P. Fanizzi, F. P. Intini, L. Maresca, G. Natile, M. Lanfranchi and A. Tiripicchio, J. Chem. Soc., Dalton Trans., 1991, 1007 RSC and refs. therein.
  12. G. Bernardinelli and H. D. Flack, Acta Crystallogr., Sect. A, 1985, 41, 500 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.