Tetranuclear grid-like copper(II) complexes with pyrazolate bridges: syntheses, structures, magnetic and EPR spectroscopic properties

(Note: The full text of this document is currently only available in the PDF Version )

Karen L. V. Mann, Elefteria Psillakis, John C. Jeffery, Leigh H. Rees, Nicholas M. Harden, Jon A. McCleverty, Michael D. Ward, Dante Gatteschi, Federico Totti, Frank E. Mabbs, Elefteria Psillakis, John C. Jeffery, Leigh H. Rees, Nicholas M. Harden, Jon A. McCleverty, Michael D. Ward, Dante Gatteschi, Federico Totti, Frank E. Mabbs,, Eric J. L. McInnes, Peter C. Riedi, Graham M. Smith , Eric J. L. McInnes, Peter C. Riedi and Graham M. Smith


Abstract

Reaction of 3-(2-pyridyl)pyrazole (HL1) and 6-(3-pyrazolyl)-2,2′-bipyridine (HL2) with nickel(II) and zinc(II) salts afforded the simple mononuclear pseudo-octahedral complexes [M(HL1)3][PF6]2 and [M(HL2)2][PF6]2 respectively (M = Ni or Zn) in which the ligands co-ordinate as neutral mononucleating chelates in the same manner as e.g. 2,2′-bipyridine or 2,2′∶6′,2″-terpyridine respectively. However with CuII the complexes [Cu4(L1)6(solv)2][PF6]2 (solv = dmf or MeOH) and [Cu4(L2)4(dmf)4][PF6]4 were isolated and crystallographically characterised, in all cases containing four tetragonally elongated square-pyramidal copper(II) ions which are linked by pyrazolate bridges from the now deprotonated ligands L1 and L2. The approximate orthogonality of the different ligands within each complex and the approximately square array of metal ions result in a grid-like structure. In [Cu4(L1)6(solv)2][PF6]2 there are successively two, one, two and one pyrazolate bridges between adjacent copper(II) ions around the Cu4 square resulting in two clearly different magnetic coupling pathways; in [Cu4(L2)4(dmf)4][PF6]4 however, which has approximate S4 symmetry, each Cu[hair space][hair space]· · ·[hair space][hair space]Cu edge has a single pyrazolate bridge and the coupling pathways are all virtually equivalent. Prolonged drying of these compounds resulted in loss of the axial dmf ligands to give [Cu4(L1)6][PF6]2 and [Cu4(L2)4][PF6]4. Magnetic susceptibility studies on these showed the presence of two antiferromagnetic exchange pathways for [Cu4(L1)6][PF6]2 with J > 172 cm–1 and J′ < 155 cm–1 (strong correlation between the parameters precludes a more precise determination), but only one antiferromagnetic exchange pathway for [Cu4(L2)4][PF6]4 with J = 63.5 cm–1, consistent with the crystal structures of the dmf adducts. The EPR spectra of [Cu4(L1)6][PF6]2 and [Cu4(L2)4][PF6]4 at a variety of frequencies and temperatures can be well simulated as arising from triplet species; however the spectrum of [Cu4(L1)6][PF6]2 also contains a feature which may be ascribed to the expected thermally populated quintet state.


References

  1. D. Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, 35, 1155; J.-M. LehnSupramolecular Chemistry, VCH, Weinheim, 1995 Search PubMed; C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem. Rev., 1997, 97, 2005 Search PubMed.
  2. T. Beissel, R. E. Powers and K. N. Raymond, Angew. Chem., Int. Ed. Engl., 1996, 35, 1084 CrossRef CAS.
  3. A. J. Amoroso, A. M. W. Cargill Thompson, J. P. Maher, J. A. McCleverty and M. D. Ward, Inorg. Chem., 1995, 34, 4828 CrossRef CAS; V. A. Ung, A. M. W. Cargill Thompson, D. A. Bardwell, D. Gatteschi, J. C. Jeffery, F. Totti and M. D. Ward, Inorg. Chem., 1997, 36, 3447 CrossRef.
  4. M. D. Ward, Chem. Soc. Rev., 1995, 121 RSC.
  5. O. Kahn, Molecular Magnetism, VCH, Weinheim, 1993 Search PubMed.
  6. V. A. Grillo, Z. Sun, K. Folting, D. N. Hendrickson and G. Christou, Chem. Commun., 1996, 2233 RSC; V. A. Grillo, M. J. Knapp, J. C. Bollinger, D. N. Hendrickson and G. Christou, Angew. Chem., Int. Ed. Engl., 1996, 35, 1818 CrossRef CAS; H. J. Eppley, H.-L. Tsai, N. de Vries, K. Folting, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc., 1995, 117, 301 CrossRef CAS; M. A. Bolcar, S. M. J. Aubin, K. Folting, D. N. Hendrickson and G. Christou, Chem. Commun., 1997, 1485 RSC.
  7. Other examples of ‘molecular grids’: P. N. W. Baxter, J.-M. Lehn, J. Fischer and M.-T. Youinou, Angew. Chem., Int. Ed. Engl., 1994, 33, 2284 Search PubMed; P. N. W. Baxter, J.-M. Lehn, B. O. Kneisel and D. Fenske, Chem. Commun., 1997, 2231 CrossRef; Angew. Chem, Int. Ed. Engl, 1997, 36, 1978 RSC; G. S. Hanan, D. Volkmer, U. S. Schubert, J.-M. Lehn, G. Baum and D. Fenske, Angew. Chem., Int. Ed. Engl., 1997, 36, 1842 RSC; C. Duan, Z. Liu, X. You, F. Xue and T. C. W. Mak, Chem. Commun., 1997, 381 Search PubMed.
  8. V. C. M. Smith and J.-M. Lehn, Chem. Commun., 1996, 2733 RSC.
  9. V. P. Hanot, T. D. Robert, J. Kolnaar, J. G. Haasnoot, J. Reedijk, H. Kooijman and A. L. Spek, J. Chem. Soc., Dalton Trans., 1996, 4275 RSC and refs. therein.
  10. (a) T. Otieno, S. J. Rettig, R. C. Thompson and J. Trotter, Inorg. Chem., 1995, 34, 1718 CrossRef CAS; (b) J. Casabó, J. Pons, K. S. Siddiqi, F. Teixidor, E. Molins and C. Miravitlles, J. Chem. Soc., Dalton Trans., 1989, 1401 RSC; (c) J. Pons, X. López, J. Casabó, F. Teixidor, A. Caubet, J. Ruis and C. Miravitlles, Inorg. Chim. Acta, 1992, 195, 61 CrossRef CAS; (d) J. Pons, F. J. Sánchez, A. Labarta, J. Casabó, F. Teixidor and A. Caubet, Inorg. Chim. Acta, 1993, 208, 167 CrossRef CAS; (e) M. Munakata, L. P. Wu, M. Yamamoto, T. Kuroda-Sowa, M. Maekawa, S. Kawata and S. Kitagawa, J. Chem. Soc., Dalton Trans., 1995, 4099 RSC; (f) P. M. Slangen, P. J. van Koningsbruggen, K. Goubitz, J. G. Haasnoot and J. Reedijk, Inorg. Chem., 1994, 33, 1121 CrossRef.
  11. J. C. Jeffery, P. L. Jones, K. L. V. Mann, E. Psillakis, J. A. McCleverty, M. D. Ward and C. M. White, Chem. Commun., 1997, 175 RSC.
  12. A. J. Amoroso, A. M. W. Cargill Thompson, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Chem. Commun., 1994, 2751 RSC; H. Brunner and T. Scheck, Chem. Ber., 1992, 125, 701 CrossRef CAS.
  13. J. S. Fleming, E. Psillakis, S. M. Couchman, J. C. Jeffery, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Dalton Trans., 1998, 537 RSC.
  14. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem, 1997, 36, 10 CrossRef CAS.
  15. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  16. D. Gatteschi and L. Pardi, Gazz. Chim. Ital., 1993, 123, 231 CAS.
  17. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge University Press, 1968 Search PubMed.
  18. G. M. Smith, J. C. G. LeSurf, R. H. Mitchell and P. C. Riedi, MTT Symposium Proceedings, Orlando, 1995, Rev. Sci. Instrum, 1998, 69, 3924 Search PubMed.
  19. F. E. Mabbs and D. Collison, Electron paramagnetic resonance of d-transition metal compounds, Elsevier, Amsterdam, 1992, Chs. 7 and 16 Search PubMed.
  20. P. L. Jones, J. C. Jeffery, J. A. McCleverty and M. D. Ward, Polyhedron, 1997, 16, 1567 CrossRef CAS.
  21. K. Singh, J. R. Long and P. Stavropoulos, J. Am. Chem. Soc., 1997, 119, 2942 CrossRef CAS.
  22. W. R. Thiel and T. Priermeier, Angew. Chem., Int. Ed. Engl., 1995, 34, 1737 CrossRef CAS; W. R. Thiel, M. Angstl and T. Priermeier, Chem. Ber., 1994, 127, 2373 CAS; J. Sieler and H. Hennig, Z. Anorg. Allg. Chem., 1971, 381, 219 CAS; Y. Luo, P. G. Potvin, Y.-H. Tse and A. B. P. Lever, Inorg. Chem., 1996, 35, 5445 CrossRef CAS.
  23. G. Eaton and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 3459 RSC.
  24. D. A. Bardwell, J. C. Jeffery and M. D. Ward, Inorg. Chim. Acta, 1995, 236, 125 CrossRef CAS and refs. therein.
  25. V. C. M. Smith and J.-M. Lehn, Chem. Commun., 1996, 2733 RSC.
  26. A. Bencini, D. Gatteschi, C. Zanchini, J. G. Haasnoot, R. Prins and J. Reedijk, J. Am. Chem. Soc., 1987, 109, 2926 CrossRef CAS.
  27. P. Chaudhuri, I. Karpenstein, M. Winter, M. Lengen, C. Butzlaff, E. Bill, A. X. Trautwein, U. Flörke and H.-J. Haupt, Inorg. Chem., 1993, 32, 888 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.