Redox behavior of the molybdenum and tungsten metallafullerenes M(η2-C60)(CO)2(phen)(dbm) (phen = 1,10-phenanthroline; dbm = dibutyl maleate): (spectro)electrochemistry and theoretical considerations

(Note: The full text of this document is currently only available in the PDF Version )

Piero Zanello, Franco Laschi, Marco Fontani, Carlo Mealli, Andrea Ienco, Kaluo Tang, Xianglin Jin and Lei Li


Abstract

Electrochemistry of M(η2-C60)(CO)2(phen)(dbm) (M = W 1, Mo 2; phen = 1,10-phenanthroline; dbm = dibutyl maleate) shows that the complexes undergo four sequential reduction processes. As with free C60, the first three electrons add reversibly (even if the relevant potentials are shifted ca. 0.15 V toward negative values), whereas the fourth reduction features chemical irreversibility. Cyclic voltammetry gives evidence that, as a consequence of the latter process, the metal fragment decomplexes and [C60]3– is released. In good agreement with this picture, a qualitative MO approach shows four close LUMOs for the ground state structure of the uncharged complexes. The first three levels are delocalized over C60 (somewhat extended to the dmb π system), while the fourth one is metal–fullerene antibonding (back donation dπ → π* C60) and its occupation causes fulleride dissociation. The EPR spectra of the electrogenerated [1] and [2] monoanions are significantly different from that of [C60] and seem suggestive of metal character for these radical species. At present, this result is unexpected in that the unpaired electron in the anions [1] and [2] should be intuitively centered on the coordinated fullerene.


References

  1. (a) P. J. Fagan, J. C. Calabrese and B. Malone, Acc. Chem. Res., 1992, 25, 134 CrossRef CAS; (b) J. M. Hawkins, Acc. Chem. Res., 1992, 25, 150 CrossRef CAS; (c) R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685 CrossRef CAS; (d) A. L. Balch, J. W. Lee, B. C. Noll and M. M. Olmstead, Inorg. Chem., 1994, 33, 5238 CrossRef CAS and references therein; (e) I. J. Mavunkal, Y. Chi, S.-M. Peng and G.-H. Lee, Organometallics, 1995, 14, 4454 CrossRef CAS and references therein; (f) M. D. Westmeyer, T. B. Rauchfuss and A. K. Verna, Inorg. Chem., 1996, 35, 7140 CrossRef and references therein; (g) K. Tang, S. Zheng, X. Jin, H. Zeng, Z. Gu, X. Zhou and Y. Tang, J. Chem. Soc., Dalton Trans., 1997, 3585 RSC and references therein; (h) K. Lee, H.-F. Hsu and J. R. Shapley, Organometallics, 1997, 16, 3876 CrossRef and references therein; (i) J. T. Park, H. Song, J.-J. Cho, M.-K. Chung, J.-H. Lee and I.-H. Suh, Organometallics, 1998, 17, 227 CrossRef CAS and references therein; (j) H.-F. Hsu, Y. Du, T. E. Albrecht-Schmitt, S. R. Wilson and J. R. Shapley, Organometallics, 1998, 17, 1756 CrossRef CAS.
  2. A. L. Balch, D. A. Costa and M. M. Olmstead, Chem. Commun., 1996, 2449 RSC and references therein H.-F. Hsu, S. R. Wilson and J. R. Shapley, Chem. Commun., 1997, 1125 Search PubMed.
  3. Q. Xie, E. Pérez-Cordero and L. Echegoyen, J. Am. Chem. Soc., 1992, 114, 3978 CrossRef; Y. Ohsawa and T. Saji, J. Chem. Soc., Chem. Commun., 1992, 781 RSC; D. Dubois, G. Moninot, W. Kutner, M. T. Jones and K. M. Kadish, J. Phys. Chem., 1992, 96, 7137 CrossRef CAS.
  4. (a) S. A. Lerke, B. A. Parkinson, D. H. Evans and P. J. Fagan, J. Am. Chem. Soc., 1992, 114, 7807 CrossRef CAS; (b) R. S. Koefod, C. Xu, W. Lu, J. R. Shapley, M. G. Hill and K. R. Mann, J. Phys. Chem., 1992, 96, 2928 CrossRef CAS; (c) J. R. Shapley, Y. Du, H.-F. Hsu and J. J. Way, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, eds. K. M. Kadish and R. S. Ruoff, The Electrochemical Society, Pennington, NJ, 1994, vol. 24, p. 1255 Search PubMed; (d) M. Iyoda, F. Sultana, S. Sasaki and H. Butenschön, Tetrahedron Lett., 1995, 36, 579 CrossRef CAS; (e) J. T. Park, J.-J. Cho, H. Song, C.-S. Jun, Y. Son and J. Kwak, Inorg. Chem., 1997, 36, 2698 CrossRef CAS; (f) A. N. Chernega, M. L. H. Green, J. Haggit and A. H. H. Stephens, J. Chem. Soc., Dalton Trans., 1998, 755 RSC.
  5. J. A. Lopez and C. Mealli, J. Organomet. Chem., 1994, 478, 161 CrossRef CAS; N. Koga and N. Morokuma, Chem. Phys. Lett., 1993, 202, 230 CrossRef; H. Fujimoto, Y. Nakao and K. Fukui, Inorg. Chem., 1980, 19, 3068 CrossRef CAS.
  6. M. P. Youngblood and D. W. Margerum, Inorg. Chem., 1980, 19, 3068 CrossRef CAS.
  7. G. P. Lozos, B. M. Hoffman and C. G. Franz, QCPE, 1991, 23, 20 Search PubMed.
  8. M. H. B. Stiddard, J. Chem. Soc., 1962, 4712 RSC.
  9. R. Hoffmann, J. Chem. Phys., 1963, 39, 1397 CrossRef CAS; R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, 36, 2179 CrossRef CAS; R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 3489 CrossRef.
  10. J. H. Ammeter, H.-B. Bürgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686 CrossRef CAS.
  11. R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 7240 CrossRef CAS.
  12. C. Mealli and D. M. Proserpio, J. Chem. Educ., 1990, 67, 399 CrossRef CAS.
  13. E. R. Brown and J. R. Sandifer, Physical Methods of Chemistry. Electrochemical Methods, eds. B. W. Rossiter and J. F. Hamilton, Wiley, New York, 1986, vol. 2, ch. 4 Search PubMed.
  14. T. Kato, T. Kodama, M. Oyama, S. Okazaki, T. Shida, T. Nakagawa, Y. Matsui, S. Suzuki, H. Shiromaru, K. Yamauchi and Y. Achiba, J. Chem. Phys. Lett., 1991, 186, 35 Search PubMed; D. Dubois, M. T. Jones and K. M. Kadish, J. Am. Chem. Soc., 1992, 114, 6446 CrossRef CAS.
  15. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711 CrossRef.
  16. B. Knight, N. Martìn, T. Ohno, E. Ortì, C. Rovira, J. Veciana, J. Vidal-Gancedo, P. Viruela and F. Wudl, J. Am. Chem. Soc., 1997, 119, 9871 CrossRef CAS.
  17. C. Mealli, A. Ienco, E. B. Hoyt Jr. and R. W. Zoellner, Chem. Eur. J., 1997, 3, 958 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.