Theoretical study of the geometric and electronic structures of pseudo-octahedral d0 imido compounds of titanium: the trans influence in mer-[Ti(NR)Cl2(NH3)3] (R = But, C6H5 or C6H4NO2-4)

(Note: The full text of this document is currently only available in the PDF Version )

Nikolas Kaltsoyannis and Philip Mountford


Abstract

The geometric and electronic structure of mer-[Ti(NR)Cl2(NH3)3] (R = But, C6H5 or C6H4NO2-4), models for the corresponding crystallographically characterised pyridine complexes [Ti(NR)Cl2(py)3], have been studied computationally using non-local density functional theory. In general, excellent agreement is found between the fully optimised calculated geometries and the experimental structures. Each of the molecules is calculated to have a significantly longer Ti–NH3 (trans) distance than Ti–NH3 (cis), this trans influence decreasing in the order But > C6H5 > C6H4NO2-4. This result supplements the crystallographic results, which found no experimentally significant difference in the trans influences in [Ti(NR)Cl2(py)3] (R = But, C6H5 or C6H4NO2-4). The causes of the trans influence have been investigated. Approximately 25% of the trans influence in the fully optimised geometries arises from π orbital driven increases in the RN[triple bond, length half m-dash]Ti–Cl angle, which lead to increased steric repulsion between the cis Cl atoms and the trans NH3 group. This contrasts sharply with the situation for [OsNCl5]2– (studied previously by other workers and revisited in the present contribution) in which most of the trans influence depends on cistrans-Cl ligand repulsions as the N[triple bond, length half m-dash]Os–Cl (cis) angles relax from 90° to their fully optimised value. The remaining 75% of the trans influence for the title titanium imides is attributed to their intrinsic electronic structures, and in particular to two occupied molecular orbitals which are Ti–NH3 (trans) antibonding and which vary in composition according to the identity of the imido N-substituent. By contrast, none of the molecules has an occupied orbital which is Ti–NH3 (cis) antibonding.


References

  1. W. A. Nugent and J. M. Mayer, Metal-ligand multiple bonds, Wiley-Interscience, New York, 1988 Search PubMed.
  2. J. K. Burdett and T. A. Albright, Inorg. Chem., 1979, 18, 2112 CrossRef CAS.
  3. E. M. Shustorovich, M. A. Porai-Koshits and Y. A. Busalev, Coord. Chem. Rev., 1975, 17, 1 CrossRef CAS.
  4. D. Bright and J. A. Ibers, Inorg. Chem., 1969, 8, 709 CrossRef CAS.
  5. P. D. Lyne and D. M. P. Mingos, J. Organomet. Chem., 1994, 478, 141 CrossRef CAS.
  6. P. D. Lyne and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1995, 1635 RSC.
  7. P. E. Collier, S. C. Dunn, P. Mountford, O. V. Shishkin and D. Swallow, J. Chem. Soc., Dalton Trans., 1995, 3743 RSC.
  8. A. J. Blake, P. E. Collier, S. C. Dunn, W.-S. Li, P. Mountford and O. V. Shishkin, J. Chem. Soc., Dalton Trans., 1997, 1549 RSC.
  9. D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239 CAS.
  10. P. Mountford, Chem. Commun., 1997, 2127 RSC.
  11. A. J. Blake, P. E. Collier, L. H. Gade, M. McPartlin, P. Mountford, M. Schubart and I. J. Scowen, Chem. Commun., 1997, 1555 RSC.
  12. P. J. Wilson, A. J. Blake, P. Mountford and M. Schröder, Chem. Commun., 1998, 1007 RSC.
  13. A. J. Blake, S. C. Dunn, J. C. Green, N. M. Jones, A. G. Moody and P. Mountford, Chem. Commun., 1998, 1235 RSC.
  14. J. M. McInnes and P. Mountford, Chem. Commun., 1998, 1669 RSC.
  15. G. te Velde and E. J. Baerends, J. Comp. Phys., 1992, 99, 84 Search PubMed.
  16. ADF < 2.3 >, Department of Theoretical Chemistry, Vrije Universiteit, Amsterdam, 1997.
  17. T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders and W. Ravenek, J. Phys. Chem., 1989, 93, 3050 CrossRef CAS.
  18. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  19. A. Becke, Phys. Rev. A, 1998, 38, 3098 CrossRef.
  20. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  21. R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833 CAS.
  22. For details of both MOLDEN and ADFrom, the reader is directed to http://www.caos, kun.nl/~schaft/molden/molden.html.
  23. T. Ziegler and A. Rauk, Theor. Chim. Acta, 1977, 46, 1 CrossRef CAS.
  24. T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1558 CrossRef CAS.
  25. E. J. Baerends, V. Branchadell and M. Sodupe, Chem. Phys. Lett., 1997, 265, 481 CrossRef CAS.
  26. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, HarperCollins, New York, 4th edn., 1993, p. 421 Search PubMed.
  27. D. M. Hoffman, R. Hoffmann and C. R. Fisel, J. Am. Chem. Soc., 1982, 104, 3858 CrossRef CAS.
  28. N. Kaltsoyannis, unpublished work.
  29. P. Mountford and D. Swallow, J. Chem. Soc., Chem. Commun., 1995, 2357 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.