The influence of transannular interactions on the redox properties of the tricarbonylchromium complexes of ortho-, meta- and para-[2.2]cyclophane

(Note: The full text of this document is currently only available in the PDF Version )

Alan M. Bond, Paul J. Dyson, David G. Humphrey, George Lazarev and Priya Suman


Abstract

The redox behaviour of the [2.2]cyclophane complexes, [Cr(CO)36-C16H16)] [ortho (1,2), meta (1,3) and para (1,4) isomers], has been examined by cyclic voltammetry in 0.2 mol dm–3 [NBu4][PF6]–CH2Cl2. The complexes display a one-electron oxidation in the region +0.7–+1.0 V (vs. Ag–AgCl), with the reversible half-wave potential varying in the order ortho > meta > para. The variation in reversible potential for the oxidation process indicates that the three cyclophane isomers impart different degrees of stabilisation on the {Cr(CO)3} moiety, in accord with the anticipated variation in the inter-ring π–π interaction within ortho-, meta- and para-cyclophane. The IR spectra of the [Cr(CO)36-C16H16)]+˙ radical cations have been collected by in situ spectroelectrochemical electrogeneration. Despite the different reversible potentials for the oxidation of the three [Cr(CO)36-C16H16)]z complexes, their IR spectra, both in the neutral and cationic states, are all quite similar, with the A1 and E bands occurring in the region 1961–1956 and 1887–1876 cm–1 (z = 0) and 2071–2068 and 2006–2003 cm–1 (z = 1+) respectively. The stability of the one-electron oxidised products, as judged by cyclic voltammetry, IR and EPR spectroelectrochemistry, also varies with cyclophane isomer, in the order para > meta > ortho. The stability of the [Cr(CO)36-C16H16-1,4)]+˙ cation is such that it has also been characterised by EPR spectroscopy. The EPR spectrum consists of a rhombic pattern of three lines at g = 2.0860, 2.0374 and 1.9940 G corresponding to g1, g2 and g3.


References

  1. D. J. Cram and J. M. Cram, Acc. Chem. Res., 1971, 4, 204 CrossRef CAS and refs. therein F. Vögtle and P. Neumann, Angew. Chem., Int. Ed. Engl., 1972, 11, 73 Search PubMed; J. Kleinschroth and H. Hopf, Angew. Chem., Int. Ed. Engl., 1982, 21, 469 CrossRef.
  2. J. Schultz and F. Vögtle, Top. Curr. Chem., 1994, 172, 41 CAS; A. de Meijere and B. König, Synlett, 1997, 1221 CrossRef CAS.
  3. V. Boekelheide, Pure Appl. Chem., 1986, 58, 1 CAS.
  4. M. M. Pellegrin, Recl. Trav. Chim. Pays-Bas, 1899, 18, 458.
  5. D. J. Cram and H. J. Steinberg, J. Am. Chem. Soc., 1951, 73, 5691 CrossRef CAS.
  6. R. H. Mitchell, T. K. Vinod, G. J. Bodwell, K. S. Weerawarna, W. Anker, R. V. Williams and G. W. Bushnell, Pure Appl. Chem., 1986, 58, 15 CAS.
  7. M. Benedikt and K. Schlögl, Monatsh. Chem., 1978, 109, 805 CAS.
  8. P. J. Dyson, D. G. Humphrey, J. E. McGrady, D. M. P. Mingos and D. J. Wilson, J. Chem. Soc., Dalton Trans., 1995, 4039 RSC.
  9. M. J. Morris, Comprehensive Organometallic Chemistry II, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol. 5, ch. 8, p. 494 Search PubMed.
  10. C. G. Zoski, D. A. Sweigart, N. J. Stone, P. H. Rieger, E. Mocellin, T. F. Mann, D. R. Mann, D. K. Gosser, M. M. Doeff and A. M. Bond, J. Am. Chem. Soc., 1988, 110, 2109 CrossRef CAS.
  11. R. H. Wopschall and I. Shain, Anal. Chem., 1967, 39, 1514 CrossRef CAS.
  12. W. R. Heineman and P. T. Kissinger, Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York, 1984, ch. 3, pp. 78–93 Search PubMed.
  13. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, ed. T. J. Kemp, Ellis Horwood, Chichester, 1985, ch. 6, pp. 210–212 Search PubMed.
  14. A. M. Bond, S. Fletcher, F. Marken, S. J. Shaw and P. G. Symons, J. Chem. Soc., Faraday Trans., 1996, 92, 3925 RSC.
  15. A. D. Hunter, V. Mozol and S. D. Tsai, Organometallics, 1992, 11, 2251 CrossRef CAS.
  16. T. Sato, K. Torizuka, R. Komaki and H. Atobe, J. Chem. Soc., Perkin Trans. 2, 1980, 561 RSC.
  17. G. Davidson and E. M. Riley, Spectrochim. Acta, Part A, 1971, 27, 1649 CrossRef CAS.
  18. C. A. Blaine, J. E. Ellis and K. R. Mann, Inorg. Chem., 1995, 34, 1552 CrossRef CAS.
  19. D. A. Fiedler, M. Koppenol and A. M. Bond, J. Electrochem. Soc., 1995, 142, 862 CAS.
  20. M. P. Castellani, N. G. Connelly, R. D. Pike, A. L. Rieger and P. H. Rieger, Organometallics, 1997, 16, 4369 CrossRef CAS.
  21. W. Baker, R. J. Banks, D. R. Lyon and F. G. Mann, J. Chem. Soc., 1945, 27 RSC.
  22. W. Baker, J. McOmie and J. M. Norman, J. Chem. Soc., 1951, 1114 RSC.
  23. W. Strohmeier, Chem. Ber., 1961, 94, 2490 CAS.
  24. E. Langer and H. Lehner, Tetrahedron, 1973, 29, 375 CrossRef CAS.
  25. D. J. Cram and D. I. Wilkinson, J. Am. Chem. Soc., 1969, 82, 5721.
  26. S. P. Best, R. J. H. Clark, R. P. Cooney and R. C. S. McQueen, Rev. Sci. Instrum., 1987, 58, 2071 CrossRef CAS.
  27. S. P. Best, S. A. Ciniawsky and D. G. Humphrey, J. Chem. Soc., Dalton Trans., 1996, 2945 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.