Lead complexation by novel phenanthroline-containing macrocycles[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Carla Bazzicalupi, Andrea Bencini, Vieri Fusi, Claudia Giorgi, Piero Paoletti and Barbara Valtancoli


Abstract

Two new polyamine macrocycles 2,5,8-triaza[9]-[9](2,9)[1,10]-phenanthrolinophane (L1) and 2,5,8,11-tetraaza[12]-[12](2,9)[1,10]-phenanthrolinophane (L2) have been synthesized and characterized. They contain a triamine (L1) or a tetraamine (L2) chain linking the 2,9 positions of a phenanthroline moiety. Like L3, which contains a pentaamine chain connecting the 2,9-phenanthroline positions, they form stable 1∶1 lead(II) complexes in aqueous solutions. These complexes can readily be extracted in non-aqueous solvents, such as CHCl3 or CH2Cl2. The thermodynamic parameters for lead(II) complexation have been determined by means of potentiometric and microcalorimetric measurements in aqueous solutions. The stability of the complexes decreases from L1 to L3 mainly due to a marked decrease of the enthalpy changes related to the formation of the complexes, indicating that the overall metal–ligand interaction decreases from L1 to L3. Most likely, in the [PbL1]2+ complex all donors are strongly involved in metal co-ordination, while in [PbL2]2+ and [PbL3]2+ some of the amine groups are weakly bound, or not bound, to the metal. These considerations are supported by the crystal structures of [(PbL1Br)2(µ-Br)][PbL1Br2]Br·5H2O. In the latter complex the macrocycle wraps around the metal. On the other hand, three nitrogen donors interact at remarkably longer distance than the others. This observation may justify the lower stability of the [PbL3]2+ complex with respect to that of [PbL1]2+.


References

  1. M. N. Hughes, The Inorganic Chemistry of the Biological Processes, Wiley, New York, 1981 Search PubMed.
  2. (a) J. S. Bradshaw, Aza-crown Macrocycles, Wiley, New York, 1993 Search PubMed; (b) R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen and D. Sen, Chem. Rev., 1985, 85, 271 CrossRef CAS; (c) R. M. Izatt, K. Pawlak and J. S. Bradshaw, Chem. Rev., 1991, 91, 1721 CrossRef CAS; (d) J. Nelson, V. McKee and G. Morgan, Prog. Inorg. Chem., 1998, 47, 167 CAS.
  3. L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989 Search PubMed; M. Dobler, Ionophores and their Structure, Wiley-Interscience, New York, 1981 Search PubMed.
  4. N. W. Alcock, E. W. Curzon and P. Moore, J. Chem. Soc., Dalton Trans., 1984, 605 RSC.
  5. K. Wieghardt, M. Kleine-Boymann, B. Nuber, J. Weiss, L. Zsolnai and G. Huttner, Inorg. Chem., 1986, 25, 1647 CrossRef CAS.
  6. M. G. B. Drew, A. Rodgers, M. McCann and S. M. Nelson, J. Chem. Soc., Chem. Commun., 1978, 415 RSC.
  7. (a) R. D. Hancock, M. S. Shaikjee, S. M. Dobson and C. A. Boeyens, Inorg. Chim. Acta, 1988, 154, 229 CrossRef CAS; (b) V. J. Thöm, M. S. Shaikjee and R. D. Hancock, Inorg. Chem., 1986, 25, 2992 CrossRef CAS; (c) V. J. Thöm, G. D. Hosken and R. D. Hancock, Inorg. Chem., 1985, 24, 3378 CrossRef CAS; (d) V. J. Thöm and R. D. Hancock, J. Chem. Soc., Dalton Trans., 1985, 1877 RSC.
  8. A. Bencini, A. Bianchi, E. Garcia-España, M. Micheloni and P. Paoletti, Inorg. Chem., 1988, 27, 186 and refs. therein A. Bencini, A. Bianchi, P. Paoletti and P. Paoli, Coord. Chem. Rev., 1992, 120, 51 Search PubMed.
  9. A. Andres, A. Bencini, A. Charachalios, A. Bianchi, P. Dapporto, E. Garcia-España, P. Paoletti and P. Paoli, J. Chem. Soc., Dalton Trans., 1993, 3507 RSC.
  10. P. G. Sammes and G. Yahioglu, Chem. Soc. Rev., 1994, 328 RSC.
  11. J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 1974, 96, 2268 CrossRef CAS.
  12. C. J. Chandler, L. W. Deady and J. A. Reiss, J. Heterocycl. Chem., 1981, 18, 599 CrossRef CAS.
  13. C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1971.
  14. K. Byriel, K. R. Dunster, L. R. Gahan, C. H. L. Kennard, J. L. Latten, I. L. Swann and P. A. Duckworth, Polyhedron, 1992, 10, 1205 CrossRef CAS.
  15. L. Shimoni-Livny, J. P. Glusker and C. W. Bock, Inorg. Chem., 1998, 37, 1853 CrossRef CAS.
  16. M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1978, 1081; 19802536 Search PubMed.
  17. A. Bencini, A. Bianchi, E. Garcia-España, M. Giusti, M. Micheloni and P. Paoletti, Inorg. Chem., 1987, 26, 681 CrossRef CAS.
  18. C. Bazzicalupi, A. Bencini, V. Fusi, C. Giorgi, P. Paoletti and B. Valtancoli, Inorg. Chem., 1998, 37, 941 CrossRef CAS.
  19. DIFABS, N. Walker and D. D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 Search PubMed; SHELX 76, G. M. Sheldrick, Program for Crystal Structure Determination, University of Cambridge, 1976 CrossRef; SHELXL 93, G. M. Sheldrick, University of Göttingen, 1993 CrossRef; International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. IV CrossRef.
  20. A. Bianchi, L. Bologni, P. Dapporto, M. Micheloni and P. Paoletti, Inorg. Chem., 1984, 23, 1201 CrossRef CAS.
  21. G. Gran, Analyst (London), 1952, 77, 661 RSC; F. J. Rossotti and H. Rossotti, J. Chem. Educ., 1965, 42, 375 CrossRef CAS.
  22. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  23. M. Micheloni, KK88 computer program (Fortran), University of Florence, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.