Structural study of the trigonal Bi2.34U0.33La0.33O5 oxide ion conductor: Rietveld refinement of X-ray and neutron powder diffraction data

(Note: The full text of this document is currently only available in the PDF Version )

Jose Manuel Amarilla, Jose Antonio Alonso and Rosa M. Rojas


Abstract

The structure of Bi2.34U0.33La0.33O5 has been investigated by Rietveld refinement of powder X-ray and neutron diffraction data. The compound is trigonal, space group P[3 with combining macron], Z = 1, and lattice parameters aH = 4.01395(8), cH = 9.5423(2) Å. X-Ray diffraction data are in favour of a model in which U and La atoms are situated in different crystallographic positions: i.e. 1a and 2d of the P[3 with combining macron] space group respectively, forming mixed Bi/U and Bi/La layers which alternate along the c axis. The structure of this bismuth-based mixed oxide can be described as built up of interlocked edge-sharing (Bi/U)O8 and (Bi/La)O8 polyhedra. The co-ordination polyhedron around the Bi/U atoms is a hexagonal bipyramid, the equatorial plane being a puckered hexagon. The Bi/La atoms are co-ordinated to eight oxygen atoms forming a slightly distorted cube. Electron diffraction studies showed that the structure can be described as a fluorite-type superstructure, the relation to the fluorite sub-cell is a*H ≈ ⅓[[2 with combining macron][2 with combining macron]4]a*C, b*H ≈ ⅓[ [4 with combining macron]22]a*C, c*H ≈ ⅓[111]a*C. This compound is a good oxide ion conductor (σ300 °C = 2.5 × 10–5 S cm–1). On the basis of the anion vacancies distribution determined from neutron diffraction refinement, a pathway for the oxide ion conduction is proposed.


References

  1. T. Takahashi and H. Iwahara, Mater. Res. Bull., 1978, 13, 1447 CrossRef CAS.
  2. P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel and M. Greenblatt, Solid State Ionics, 1996, 89, 179 CrossRef CAS.
  3. A. M. Azad, S. Larose and S. A. Akbar, J. Mater. Sci., 1994, 29, 4135 CrossRef CAS.
  4. E. N. Naumovich, V. V. Kharton, V. V. Samokhval and A. V. Kovalevsky, Solid State Ionics, 1997, 93, 95 CrossRef.
  5. K. Z. Fung and A. V. Virkar, J. Am. Ceram. Soc., 1991, 74, 1970 CAS.
  6. K. Huang, M. Feng and J. B. Goodenough, Solid State Ionics, 1996, 89, 17 CrossRef CAS.
  7. J. M. Amarilla, R. M. Rojas and J. M. Rojo, Chem. Mater., 1998, 10, 574 CrossRef CAS.
  8. J. M. Amarilla and R. M. Rojas, Chem. Mater., 1996, 8, 401 CrossRef CAS.
  9. A. S. Koster, J. P. P. Renaud and G. D. Rieck, Acta Crystallogr., Sect. B, 1975, 31, 127 CrossRef.
  10. H. A. Harwig, Z. Anorg. Allg. Chem., 1978, 444, 151 CrossRef CAS.
  11. M. J. Verkerk, G. M. H. van de Velde, A. J. Burggraaf and R. B. Helmholdt, J. Phys. Chem. Solids, 1982, 43, 1129 CrossRef CAS.
  12. D. Mercurio, M. El Farissi, J. C. Champarnaud-Mesjard, B. Frit, P. Conflant and G. Roult, J. Solid State Chem., 1989, 80, 133 CAS.
  13. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  14. K. W. Bagnall, Gmelin Handbook of Inorganic Chemistry, Uranium Suppl. Vol. C13, Verlag Chemie, Weinheim, 1983 Search PubMed.
  15. Comprehensive Inorganic Chemistry, eds. J. C. Bailar, H. J. Emeléus, R. Nyholm and A. F. Trotman-Dickenson, Pergamon, Oxford, 1975, ch. 45 Search PubMed.
  16. S. K. Blower and C. Greaves, Acta Crytallogr., Sect. C, 1988, 44, 587 CrossRef.
  17. J. Pannetier, D. Tranqui and A. W. Sleight, Mater. Res. Bull., 1993, 28, 985 CrossRef CAS.
  18. N. Kumada, N. Kinomura, P. M. Woodward and A. W. Sleight, J. Solid State Chem., 1995, 116, 281 CrossRef CAS.
  19. J. Geb and M. Jansen, J. Solid State Chem., 1996, 122, 364 CrossRef CAS.
  20. H. M. Rietveld, J. Appl. Crystallogr., 1982, 15, 430 CrossRef.
  21. J. Rodriguez-Carvajal, FULLPROF, PC version, Grenoble, France, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.