Matrix isolation study of the photochemically induced reaction of ozone with dibromochloromethane and bromodichloromethane in solid argon at 14 K. FT-IR spectra of the complexes C(O)HCl[hair space][hair space]· · ·[hair space][hair space]BrX, C(O)HBr[hair space][hair space]· · ·[hair space][hair space]XCl, C(O)BrCl[hair space][hair space]· · ·[hair space][hair space]HX, (OC)(HCl)(Br2), (OC)(HBr)(Cl2), and (OC)(BrCl)(HX) (where X = Br or Cl)

(Note: The full text of this document is currently only available in the PDF Version )

Robin J. H. Clark, Jonathan R. Dann and Loraine J. Foley


Abstract

Quartz-filtered (λ > 240 nm) photolysis of either ozone/dibromochloromethane or ozone/bromodichloromethane in an argon matrix at 14 K has been shown by FT-IR spectroscopy to lead to the formation of the carbonyl[hair space][hair space]· · ·[hair space][hair space]Lewis acid complexes C(O)HCl[hair space][hair space]· · ·[hair space][hair space]BrX, C(O)HBr[hair space][hair space]· · ·[hair space][hair space]XCl, C(O)BrCl[hair space][hair space]· · ·[hair space][hair space]HX, and C(O)Cl2[hair space][hair space]· · ·[hair space][hair space]HBr, where X = Br or Cl, depending on the trihalogenomethane used. Several of these complexes are new and are formed by either hydrogen halide or dihalogen abstraction reactions. Upon further irradiation the carbonyl complexes dissociate to form the new carbon monoxide complexes (OC)(HCl)(Br2), (OC)(HBr)(Cl2), and (OC)(BrCl)(HX). Thus the photo-induced reactions of ozone with trihalogenomethanes lead to the formation of new carbonyl and carbon monoxide complexes whose vibrational properties are well characterised by FT-IR spectroscopy. Suggested pathways for the photolyses are presented.


References

  1. L. Schriver, B. Gauthier-Roy, D. Carrere, A. Schriver and L. Abouaf-Marguin, Chem. Phys., 1992, 163, 357 CrossRef CAS.
  2. L. Schriver, O. Abdelaoui and A. Schriver, J. Phys. Chem., 1992, 96, 8069 CrossRef CAS.
  3. C. Lugez, A. Schriver, L. Schriver-Mazzouli, E. Lasson and C. J. Nielsen, J. Phys. Chem., 1993, 97, 11617 CrossRef CAS.
  4. M. Hawkins and L. Andrews, Inorg. Chem., 1985, 24, 3285 CrossRef.
  5. R. J. H. Clark and J. R. Dann, J. Phys. Chem., 1997, 101, 2074 Search PubMed.
  6. P. Brosset, R. Dahoo, B. Gauthier-Roy and L. Abouaf-Marguin, Chem. Phys., 1993, 172, 315 CrossRef CAS.
  7. R. J. H. Clark and J. R. Dann, J. Phys. Chem., 1996, 100, 532 CrossRef CAS.
  8. R. J. H. Clark, J. R. Dann and L. J. Foley, J. Phys. Chem., 1997, 101, 9260 Search PubMed.
  9. L. Strandman-Long, B. Nelander and L. Nord, J. Mol. Struct., 1984, 117, 217 CrossRef CAS.
  10. J. Overend and J. C. Evans, Trans. Faraday Soc., 1960, 55, 1817 Search PubMed.
  11. J. S. Kwiatkowski and J. Leszczynski, J. Mol. Phys., 1994, 81, 119 Search PubMed.
  12. E. Catalano and K. S. Pitzer, J. Am. Chem. Soc., 1958, 80, 1054 CrossRef CAS.
  13. Y. Bouteiller, O. Abdelaoui, A. Schriver and L. Schriver-Mazzuoli, J. Chem. Phys., 1995, 102, 1731 CrossRef CAS.
  14. L. Andrews, R. T. Arlinghaus and G. L. Johnson, J. Chem. Phys., 1983, 78, 6347 CrossRef CAS.
  15. H. Dubost and L. Abouaf-Marguin, Chem. Phys. Lett., 1972, 17, 269 CrossRef CAS.
  16. A. J. Barnes, H. E. Hallam and G. F. Schrimshaw, Trans. Faraday Soc., 1969, 65, 3150 RSC.
  17. A. J. Barnes, H. E. Hallam and G. F. Schrimshaw, Trans. Faraday Soc., 1969, 65, 3172 RSC.
  18. W. M. Huo, J. Chem. Phys., 1965, 43, 624 CAS.
  19. E. Lasson and C. J. Nielsen, Acta Chem. Scand., 1997, 51, 1 CAS.
  20. J. P. Perchard, J. Cipriani, B. Silvi and D. Maillard, J. Mol. Struct., 1983, 100, 317 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.