Ag+ ion complexation properties of N-phenylpolythiazaalkane derivatives: synthesis, crystallography, 1H NMR spectroscopy, potentiometry and metal ion recognition properties

(Note: The full text of this document is currently only available in the PDF Version )

Junichi Ishikawa, Hidefumi Sakamoto, Mutsumi Nakamura, Kunio Doi and Hiroko Wada


Abstract

A series of N-phenylpolythiazaalkane derivatives; the cyclic derivatives 4-phenyl-1-thia-4-azacyclohexane 1, 7-phenyl-1,4-dithia-7-azacyclononane 2, 10-phenyl-1,4,7-trithia-10-azacyclododecane 3 and 13-phenyl-1,4,7,10-tetrathia-13-azacyclopentadecane 4 and acyclic derivatives 6-phenyl-3,9-dithia-6-azaundecane 5 and 9-phenyl-3,6,12,15-tetrathia-9-azaheptadecane 6, have been studied towards complexation with Ag+ ion. Single crystals of two Ag(I) complexes, [Ag(2)2][CF3SO3] and [Ag(4)][CF3SO3] were prepared and their structures were determined in the crystalline state by X-ray diffraction. In [Ag(2)2][CF3SO3], two bidentate 2 ligands, in which two sulfur atoms act as coordination sites, sandwich Ag(I) to give a four-coordinate complex in near tetrahedral geometry. In [Ag(4)], Ag(I) enters into a cavity composed of four sulfur atoms to give a distorted tetrahedral geometry. The changes of the chemical shifts in 1H NMR spectroscopy by the addition of CF3SO3Ag indicate that 1 and 2 exhibit small downfield shifts only for the protons of the thioether moiety, while 3, 4, 5 and 6 show drastic shifts for all protons. Ag+ ion complexation with N-phenylpolythiazaalkane and polythiaalkane derivatives, which were used for comparison, was studied in acetonitrile solution by potentiometry. Results show that the complex stability is governed primarily by the number of sulfur donor atoms, and the nitrogen atom of the N-phenylpolythiazaalkane derivatives scarcely contributes to the stability of the complexes. The extraction of transition metal ions with N-phenylpolythiazaalkane derivatives was examined and very high Ag+ ion selectivity was observed for most of them. The extraction equilibria of the Ag(I) complexes of N-phenylpolythiazaalkane derivatives were studied and the extraction constants of the extracted complexes determined. Results indicate that the extractability of 1∶1 complexes depends on their stability. In liquid membrane transport, all N-phenylpolythiazaalkane derivatives exhibited Ag+ ion selective transportability and the order for the Ag+ ion transport rate was 5 > 2 ≈ 3 > 4 ≈ 6 [double greater-than, compressed] 1.


References

  1. C. J. Pedersen, Angew. Chem., Int. Ed. Engl., 1988, 27, 1021 CrossRef.
  2. D. J. Cram, Angew. Chem., Int. Ed. Engl., 1988, 27, 1009 CrossRef.
  3. J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89 CrossRef.
  4. K. E. Krakowiak, J. S. Bradshaw and D. J. Zamecka-Krakowiak, Chem. Rev., 1989, 89, 929 CrossRef CAS.
  5. J. S. Bradshaw, K. E. Krakowiak and R. M. Izatt, Tetrahedron, 1992, 48, 4475 CrossRef CAS.
  6. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen and D. Sen, Chem. Rev., 1985, 85, 271 CrossRef CAS.
  7. R. M. Izatt, K. Pawlak and J. S. Bradshaw, Chem. Rev., 1991, 91, 1721 CrossRef CAS.
  8. R. M. Izatt, J. S. Bradshaw, K. Pawlak, R. L. Bruening and B. J. Tarbet, Chem. Rev., 1992, 92, 1261 CrossRef CAS.
  9. D. J. Cram, Angew. Chem., Int. Ed. Engl., 1986, 25, 1039 CrossRef.
  10. G. W. Gokel, Chem. Soc. Rev., 1992, 39 RSC.
  11. H. An, J. S. Bradshaw, R. M. Izatt and Z. Yan, Chem. Rev., 1994, 94, 939 CrossRef CAS.
  12. E. Kimura, Tetrahedron, 1992, 48, 6175 CrossRef CAS.
  13. D. Sevdic and H. Meider, J. Inorg. Nucl. Chem., 1977, 39, 1403 CrossRef.
  14. D. Sevdic, L. Fekete and H. Meider, H. J. Inorg. Nucl. Chem., 1980, 42, 885 Search PubMed.
  15. D. Sevdic and H. Meider, J. Inorg. Nucl. Chem., 1981, 43, 153 CrossRef CAS.
  16. K. Saito, Y. Masuda and E. Sekido, Anal. Chim. Acta, 1983, 151, 447 CrossRef CAS.
  17. E. Sekido, K. Saito, Y. Naganuma and H. Kumazaki, Anal. Sci., 1985, 1, 363 CAS.
  18. E. Sekido, H. Kawahara and K. Tsuji, Bull. Chem. Soc. Jpn., 1988, 61, 1587 CAS.
  19. K. Chayama and E. Sekido, Anal. Sci., 1987, 3, 535 CrossRef CAS.
  20. K. Saito, S. Murakami and A. Muromatsu, Anal. Chim. Acta, 1990, 237, 245 CrossRef CAS.
  21. K. Chayama and E. Sekido, Anal. Sci., 1990, 6, 883 CAS.
  22. K. Chayama and E. Sekido, Anal. Chim. Acta, 1991, 248, 511 CrossRef CAS.
  23. K. Chayama and E. Sekido, Bull. Chem. Soc. Jpn., 1990, 63, 2420 CAS.
  24. A. Ohki and M. Takagi, Anal. Chim. Acta, 1984, 159, 245 CrossRef CAS.
  25. O. Heitzsch, K. Gloe, H. Stephan and E. Weber, Solvent Extr. Ion Exch., 1994, 12, 475 Search PubMed.
  26. T. Nabeshima, T. Tsukada, K. Nishijima, H. Ohshiro and Y. Yano, J. Org. Chem., 1996, 61, 4342 CrossRef CAS.
  27. P. J. Blower, J. A. Clarkson, S. C. Rawle, J. R. Hartman, E. Robert, J. Wolf, R. Yagbasan, S. G. Bott and S. R. Cooper, Inorg. Chem., 1989, 28, 4040 CrossRef CAS.
  28. A. J. Blake, D. Collison, R. O. Gould, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1993, 521 RSC.
  29. A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde and M. Schröder, Polyhedron, 1989, 8, 513 CrossRef CAS.
  30. E. Sekido, K. Suzuki and K. Hamada, Anal. Sci., 1987, 3, 505 CAS.
  31. J. Clarkson, R. Yagbasan, P. J. Blower, S. C. Rawle and S. Cooper, J. Chem. Soc., Chem. Commun., 1987, 950 RSC.
  32. H.-J. Küppers, K. Wieghardt, Y.-H. Tsay, C. Krüger, B. Nuber and J. Weiss, Angew. Chem., Int. Ed. Engl., 1987, 26, 575 CrossRef.
  33. R. E. Wolf, Jr., J. R. Hartman, J. M. E. Storey, B. M. Foxman and S. R. Cooper, J. Am. Chem. Soc., 1987, 109, 4328 CrossRef CAS.
  34. R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1976, 98, 762 CrossRef CAS.
  35. R. S. Glass, G. S. Wilson and W. N. Setzer, J. Am. Chem. Soc., 1980, 102, 5068 CrossRef CAS.
  36. G. Reid and M. Schröder, Chem. Soc. Rev., 1990, 19, 239 RSC.
  37. A. S. Craig, R. Kataky, R. C. Matthews, G. Ferguson, A. Lough, H. Adams, N. Bailey and D. Schneider, J. Chem. Soc., Perkin Trans. 2, 1990, 1523 RSC.
  38. A. J. Blake, R. D. Crofts, B. de Groot and M. Schröder, J. Chem. Soc., Dalton Trans., 1993, 485 RSC.
  39. B. C. Westerby, K. L. Juntunen, G. H. Leggett, V. B. Pett, M. J. Koenigbauer, M. D. Purgett, M. J. Taschner and L. A. Ochrymowycz, Inorg. Chem., 1991, 30, 2109 CrossRef CAS.
  40. M. M. Bernardo, M. J. Heeg, R. R. Schroeder, L. A. Ochrymowycz and D. B. Rorabacher, Inorg. Chem., 1992, 31, 191 CrossRef CAS.
  41. T. Burchard, B. G. Cox, P. Firman and H. Schneider, Ber. Bunsenges. Phys. Chem., 1994, 98, 1526 CAS.
  42. H. Sakamoto, J. Ishikawa and M. Otomo, Bull. Chem. Soc. Jpn., 1995, 68, 2831 CAS.
  43. H. Sakamoto, J. Ishikawa, T. Mizuno, K. Doi and M. Otomo, Chem. Lett., 1993, 609 CAS.
  44. J. Ishikawa, H. Sakamoto, T. Mizuno and M. Otomo, Bull. Chem. Soc. Jpn., 1995, 68, 3071 CAS.
  45. J. Ishikawa, H. Sakamoto and M. Otomo, Analyst, 1997, 122, 1383 RSC.
  46. J. Ishikawa, H. Sakamoto, T. Mizuno, K. Doi and M. Otomo, Analyst, 1998, 123, 201 RSC.
  47. J. P. Dix and F. Vögtle, Chem. Ber., 1980, 113, 457 CrossRef CAS.
  48. J. P. Dix and F. Vögtle, Chem. Ber., 1981, 114, 638 CAS.
  49. H.-G. Löhr and F. Vögtle, Acc. Chem. Res., 1985, 18, 65 CrossRef.
  50. J. Buter and R. M. Kellogg, J. Org. Chem., 1981, 46, 4481 CrossRef.
  51. W. Rosen and D. H. Busch, J. Am. Chem. Soc., 1969, 91, 4694 CrossRef CAS.
  52. L. A. Ochrymowycz, C.-P. Mak and J. D. Michna, J. Org. Chem., 1974, 39, 2079 CrossRef CAS.
  53. F. N. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  54. B. Norén and Á. Oskarsson, Acta Chem. Scand., Ser. A, 1984, 38, 479.
  55. J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Chem. Commun., 1995, 1277 RSC.
  56. H. A. Buchholz, G. K. S. Prakash, J. F. S. Vaughan, R. Bau and G. A. Olah, Inorg. Chem., 1996, 35, 4076 CrossRef CAS.
  57. A. Bandi, J. Phys. Chem., 1964, 68, 441 CrossRef CAS.
  58. M. V. Alfimov, A. V. Churakov, Y. V. Fedorov, O. A. Fedorova, S. P. Gromov, R. E. Hester, J. A. K. Howard, L. G. Kuz'mina, I. K. Lednev and J. N. Moore, J. Chem. Soc., Perkin Trans. 2, 1997, 2249 RSC.
  59. H. Günther, NMR Spectroscopy, John Wiley & Sons, Chichester, 2nd edn., 1995, pp. 71–78 Search PubMed.
  60. A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, VCH Publishers, New York, 2nd edn., 1992, pp. 19–26 Search PubMed.
  61. J. A. Ibers and W. C. J. Hamilton, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4 Search PubMed.
  62. teXsan, Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985 & 1992.
Click here to see how this site uses Cookies. View our privacy policy here.