Further attempts to rationalise the co-ordination chemistry of manganese with Schiff base ligands and supplementary carboxylate donors

(Note: The full text of this document is currently only available in the PDF Version )

Michael Watkinson, Matilde Fondo, Manuel R. Bermejo, Antonio Sousa, Charles A. McAuliffe, Robin G. Pritchard, Nongnuj Jaiboon, Nadeem Aurangzeb and Mohammed Naeem


Abstract

Some manganese(III) complexes of Schiff base ligands with ancillary carboxylate donors have been found to exhibit structural diversity, although some patterns emerged. Thus, when the ligands 3CH3O-salen and 3CH3O-salpn [3CH3O-salen = dianion of N,N[hair space]′-bis(3-methoxysalicylidene)ethane-1,2-diamine, 3CH3O-salpn = dianion of N,N[hair space]′-bis(3-methoxysalicylidene)propane-1,3-diamine] are used in conjunction with carboxylates RCO2 (R = Me, Et, Prn or CH2Ph) unidentate carboxylate bonding occurs as in the crystallographically observed [Mn(3CH3O-salen)(O2CMe)(H2O)]·2H2O 1, [Mn(3CH3O-salen)(O2CCH2Ph)(H2O)]·H2O 4, and [Mn(3CH3O-salpn)(O2CCH2Ph)(H2O)] 5. On the other hand, employing the more sterically encumbered carboxylates ButCO2 and PriCO2, bidentate chelating binding of the carboxylate occurs, as in [Mn(3CH3O-salpn)(O2CBut)] 2 and [Mn(3CH3O-salpn)(O2CPri)] 3. The reactivity of [Mn(salpn)(acac)] (acac = acetylacetonate) with Me3SiCl and aliphatic carboxylic acids, RCO2H (R = Me, Et, Prn, Bun, Pri or But), has also been investigated. A dimer species [{Mn(salpn)Cl}2]·CH3CN 6 was isolated from the reaction of Me3SiCl with [Mn(salpn)(acac)] while the carboxylic acids seem to lead to the isolation of monomers, such as [Mn(salpn)(O2CPri)] 7. This synthetic route has also been applied to the preparation of related complexes, in which the manganese(III) centre is not attainable with reliability via the aerobic oxidation of a manganese(II) precursor, although some rare examples have been obtained by the latter method, such as [Mn(5NO2-salen)(O2CMe)(H2O)], 8, [5NO2-salen = dianion of N,N[hair space]′-bis(5-nitrosalicylidene)ethane-1,2-diamine]). Single crystals were grown from a dimethylformamide solution of the material of stoichiometry Mn(3Br,5NO2-salpn)(O2CMe)·H2O [3Br,5NO2-salpn = dianion of N,N[hair space]′-bis(3-bromo-5-nitrosalicylidene)propane-1,3-diamine], isolated from this route and found to consist of the unexpected [{Mn(µ-3Br,5NO2-salpn)(µ-O)}2]·3DMF 9, apparently containing a manganese(IV) species, in spite of the electron withdrawing nature of the substituents on the aromatic rings of the ligand.


References

  1. V. L. Pecoraro, Manganese Redox Enzymes, VCH, New York, 1992 Search PubMed.
  2. W. F. Beyer and I. Fridovich, Biochemistry, 1985, 24, 6460 CrossRef CAS.
  3. A. Willing, H. Follman and G. Auling, Eur. J. Biochem., 1988, 170, 603 CAS.
  4. M. L. Ludwig, K. A. Pattridge and W. C. Stallings, Manganese in Metabolism and Enzyme Function, Academic Press, New York, 1986, ch. 21, p. 405 Search PubMed.
  5. K. T. Govindjee and W. Coleman, Photochem. Photobiol., 1985, 42, 187; J. Amesz, J. Biochem. Biophys. Acta, 1983, 726, 1 Search PubMed.
  6. G. Christou, Acc. Chem. Res., 1989, 22, 328 CrossRef CAS; S. Wang, H.-L. Tsai, K. S. Hagen, D. N. Hendrickson and G. Christou, J. Am. Chem. Soc., 1994, 116, 8376 CrossRef CAS; R. C. Squire, S. M. J. Aubin, K. Folting, W. E. Streib, D. N. Hendrickson and G. Christou, Angew. Chem., Int. Ed. Engl., 1995, 34, 887 CrossRef CAS.
  7. H. Matsushima, E. Ishiwa, M. Koikawa, M. Nakashima and T. Tokii, Chem. Lett., 1995, 129 CAS; T. Tanase and S. J. Lippard, Inorg. Chem., 1995, 34, 4682 CrossRef CAS; J. E. Sheats, R. S. Czernuszewicz, G. C. Dismukes, A. L. Rheingold, V. Petrouleas, J. Stubbe, W. H. Armstrong, R. H. Beer and S. J. Lippard, J. Am. Chem. Soc., 1987, 109, 1435 CrossRef CAS; S. K. Mandal and W. H. Armstrong, Inorg. Chim. Acta, 1995, 229, 261 CrossRef CAS; H. Adams, N. A. Bailey, N. Debaecker, D. E. Fenton, W. Kanda, J. M. Latour, H. Okawa and H. Sakiyama, Angew. Chem., Int. Ed. Engl., 1995, 34, 2535 CrossRef CAS.
  8. M. K. Chan and W. H. Armstrong, J. Am. Chem. Soc., 1991, 113, 5055 CrossRef CAS.
  9. A. Pal, J. W. Gohdes, C. C. Wolf, A. Wilsch and W. H. Armstrong, Inorg. Chem., 1992, 31, 713 CrossRef CAS.
  10. V. L. Pecoraro, Photochem., Photobiol., 1988, 48, 249 CAS; K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153; 1994, 33, 725 Search PubMed.
  11. N. Aurangzeb, C. E. Hulme, C. A. McAuliffe, R. G. Pritchard, M. Watkinson, A. Garcia-Deibe, M. R. Bermejo and A. Sousa, J. Chem. Soc., Chem. Commun., 1992, 1524 RSC.
  12. J. E. Davies, B. M. Gatehouse and K. S. Murray, J. Chem. Soc., Dalton Trans., 1973, 2523 RSC; F. Akhtar and M. G. B. Drew, Acta Crystallogr., Sect. B, 1982, 38, 612 CrossRef; J. A. Bonadies, M. L. Kirk, M. S. Lah, D. P. Kessissoglou, W. E. Hatfield and V. L. Pecoraro, Inorg. Chem., 1989, 28, 2037 CrossRef CAS.
  13. N. Aurangzeb, C. E. Hulme, C. A. McAuliffe, R. G. Pritchard, M. Watkinson, M. R. Bermejo and A. Sousa, J. Chem. Soc., Chem. Commun., 1994, 2193 RSC.
  14. C. E. Hulme, M. Watkinson, M. Haynes, C. A. McAuliffe, R. G. Pritchard, A. Sousa, M. R. Bermejo and M. Fondo, J. Chem. Soc., Dalton Trans., 1997, 1805 RSC.
  15. E. J. Larson and V. L. Pecoraro, J. Am. Chem. Soc., 1991, 113, 3810 CrossRef CAS.
  16. M. L. H. Green, G. Parkin, J. Bashkin, J. Fail and K. Prout, J. Chem. Soc., Dalton Trans., 1982, 2519 RSC.
  17. Q. Li, J. B. Vincent, E. Libby, H.-R. Chang, J. C. Huffman, P. D. W. Boyd, G. Christou and D. N. Hendrickson, Angew. Chem., Int. Ed. Engl., 1988, 27, 1731 CrossRef.
  18. (a) L. J. Boucher and V. W. Day, Inorg. Chem., 1977, 16, 1360 CrossRef CAS; (b) V. L. Pecoraro and W. M. Butler, Acta Crystallogr., Sect. C, 1986, 42, 1151 CrossRef; (c) X. Li and V. L. Pecoraro, Inorg. Chem., 1989, 28, 3403 CrossRef CAS; (d) C. A. McAuliffe, R. G. Pritchard, L. Luaces, J. A. Garcia-Vazquez, J. Romero, M. R. Bermejo and A. Sousa, Acta Crystallogr., Sect. C, 1993, 49, 587 CrossRef; (e) C. Fraser, L. Johnston, A. L. Rheingold, B. S. Haggerty, G. K. Williams, J. Whelan and B. Bosnich, Inorg. Chem., 1992, 31, 1835 CrossRef CAS.
  19. N. A. Law, T. E. Machonkin, J. P. McGorman, E. J. Larson, J. W. Kampf and V. L. Pecoraro, J. Chem. Soc., Chem. Commun., 1995, 2015 RSC.
  20. M. R. Bermejo, A. Castineiras, J. C. Garcia-Monteagudo, M. Rey, A. Sousa, M. Watkinson, C. A. McAuliffe, R. G. Pritchard and Roy L. Beddoes, J. Chem. Soc., Dalton Trans., 1996, 2935 RSC.
  21. M. R. Bermejo, A. Garcia-Deibe, J. Sanmartin, A. Sousa, N. Aurangzeb, C. E. Hulme, C. A. McAuliffe, R. G. Pritchard and M. Watkinson, J. Chem. Soc., Chem. Commun., 1994, 645 RSC.
  22. L. J. Boucher and C. G. Coe, Inorg. Chem., 1975, 14, 1289 CrossRef CAS.
  23. N. Aurangzeb and C. A. McAuliffe, unpublished results.
  24. G. M. Sheldrick, SHELXS 86, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krueger and R. Goddard, Oxford University Press, 1985, pp. 175–189 Search PubMed.
  25. P. T. Beurskens, DIRDIF, Direct methods for difference structures, an automatic procedure for phase extension and refinement of difference structures, Technical Report 1984/1, Crystallography Laboratory, Toernooiveld, 1984.
  26. TEXSAN TEXRAY, Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985.
Click here to see how this site uses Cookies. View our privacy policy here.