Incorporation of cationic indium species into zeolite beta by template-induced reductive solid-state ion exchange

(Note: The full text of this document is currently only available in the PDF Version )

Yanka Neinska, R. Magdolna Mihályi, Vesselina Mavrodinova, Christo Minchev and Hermann K. Beyer


Abstract

Reductive solid-state ion exchange (RSSIE) was found to proceed in mechanical mixtures of crystalline In2O3 and as-synthesized precursors of zeolite beta (TEA-beta) during thermal decomposition of the template (TEA) in an inert gas atmosphere or high vacuum. It was evidenced that gaseous decomposition products of the template play the decisive role as reductants in this process, which results in the incorporation of univalent indium cations into the zeolite structure. Accordingly, no reaction between In2O3 and the zeolitic component was observed during template decomposition in an oxidizing atmosphere. After RSSIE associated with thermal template decomposition both In+ and InO+ lattice cations could be detected by typical IR spectroscopic bands attributed to interactions of these ions with adsorbed pyridine. The trivalent indium species are probably formed by a redox process involving the reduction of protons (internal silanol groups) to H2 and oxidation of In+ into InO+. In line with this conclusion is the finding that part of the In+ cations are converted into InO+ upon contact with water.


References

  1. V. Kanazirev, Y. Neinska, T. Tsoncheva and L. Kosova, in Proceedings of the 9th International Zeolite Conference, Montreal 1992, ed. R. van Ballmoos, J. B. Higgins and M. M. J. Treacy, Butterworth-Heinemann, New York, 1993, p. 461 Search PubMed.
  2. H. K. Beyer, R. M. Mihályi, Ch. Minchev, Y. Neinska and V. Kanazirev, Microporous Mater., 1996, 7, 333 CrossRef CAS.
  3. R. M. Mihályi and H. K. Beyer, in Proceedings of the 3rd Polish-German Zeolite Colloquium, ed. M. Rozwadowski, Nicholas Copernicus University Press, Torun, 1997, p. 309 Search PubMed.
  4. R. M. Mihályi, G. Pál-Borbély, H. K. Beyer, Ch. Minchev, Y. Neinska and H. G. Karge, React. Kinet. Catal. Lett., 1997, 60, 195 CAS.
  5. E. Kikuchi and K. Yogo, Catal. Today, 1994, 22, 73 CrossRef CAS.
  6. E. Kikuchi, M. Ogura, I. Terasaki and Y. Goto, J. Catal., 1996, 161, 465 CrossRef CAS.
  7. R. M. Mihályi, H. K. Beyer, V. Mavrodinova, Ch. Minchev and Y. Neinska, Microporous Mesoporous Mater., 1998, 24, 143 CrossRef CAS.
  8. Ya. Neinska, Ch. Minchev, L. Kosova and V. Kanazirev, Stud. Surf. Sci. Catal., 1995, 94, 262 CAS.
  9. S. Hegde, G. R. Kumar, R. N. Bhat and P. Ratnasamy, Zeolites, 1989, 9, 231 CrossRef.
  10. H. G. Karge and W. Niessen, Catal. Today, 1991, 8, 451 CrossRef CAS.
  11. E. Bourgeat-Lami, F. Di Renzo, F. Fajula, P. H. Mutin and T. Des. Courieres, J. Phys. Chem., 1992, 96, 3807 CrossRef CAS.
  12. M. Novotny, J. A. Lercher and H. Kessler, Zeolites, 1991, 11, 454 CAS.
  13. C. Jia, P. Massiani and D. Barthomeuf, J. Chem. Soc., Faraday Trans., 1993, 89, 3659 RSC.
  14. C. Morterra and G. Magnacca, Catal. Today, 1996, 27, 497 CrossRef CAS.
  15. R. M. Mihályi, H. K. Beyer, V. Mavrodinova, Ch. Minchev and Y. Neinska, React. Kinet. Catal. Lett., 1999, 68, 355 CAS.
  16. P. R. Hari Prasad Rao, C. A. Leon y Leon, K. Ueyama and M. Matsukata, Microporous Mesoporous Mater., 1998, 21, 305 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.