Spin-forbidden dehydrogenation of methoxy cation: a statistical view

(Note: The full text of this document is currently only available in the PDF Version )

Jeremy N. Harvey and Massimiliano Aschi


Abstract

A non-adiabatic version of RRKM theory is applied to predicting the microcanonical rates for different mechanisms of spin-forbidden dissociation of methoxy cation and its isotopically substituted derivatives, to formyl cation and dihydrogen. The predictions are in agreement with experimental results on this system, and in particular with the occurrence of a “direct’' mechanism for dissociation, rather than of an indirect one via hydroxymethyl cation. Abinitio computations were used throughout to provide the parameters needed to apply the non-adiabatic RRKM theory, and the success of this strategy is shown to be promising for other applications in polyatomic systems. Finally, the kinetic energy release distribution for loss of hydrogen from methoxy and hydroxymethyl cations are computed using abinitio “direct dynamics’' classical trajectories at the HF/6-31G** level, their similarity is also in agreement with experiment.


References

  1. M. Aschi, J. N. Harvey, C. A. Schalley, D. Schröder and H. Schwarz, Chem. Commun., 1998, 531 RSC.
  2. As mentioned below, there is in fact an analytical PES available for the singlet system (see ref. 32). However, from the way this surface was constructed, it is unlikely to be truly global, in that it probably does not describe the regions close to the triplet methoxy minimum very accurately.
  3. (a) J. C. Lorquet and B. Leyh-Nihant, J. Phys. Chem., 1988, 92, 4778 CrossRef CAS; (b) F. Remacle, D. Dehareng and J. C. Lorquet, J. Phys. Chem., 1988, 92, 4784 CrossRef CAS.
  4. For one example among many see Y. Zeiri, G. Katz, R. Kosloff, M. S. Topaler and D. G. Truhlar, Chem. Phys. Lett., 1999, 300, 523 Search PubMed.
  5. M. Ben-Nun and T. J. Martinez, J. Chem. Phys., 1998, 108, 7244 CrossRef CAS; X. Sun, H. Wang and W. H. Miller, J. Chem. Phys., 1998, 109, 7064 CrossRef CAS; C. D. Schwieters and G. A. Voth, J. Chem. Phys., 1999, 111, 2869 CrossRef CAS.
  6. J. C. Tully, J. Chem. Phys., 1990, 93, 1061 CrossRef CAS and references cited thereinSee also M. S. Topaler Topaler, M. D. Hack, T. C. Allison, Y.-P. Liu, S. L. Mielke, D. W. Schwenke and D. G. Truhlar, J. Chem. Phys., 1997, 106, 8699 Search PubMed; Y. L. Volobuev, M. D. Hack and D. G. Truhlar, J. Phys. Chem. A, 1999, 103, 6225 Search PubMed.
  7. (a) For reviews on statistical rate theories, see, e.g., W. Forst, Theory of Unimolecular Reactions, Academic Press, New York, 1973 Search PubMed; (b) D. G. Truhlar, W. L. Hase and J. T. Hynes, J. Phys. Chem., 1983, 87, 2664 CrossRef CAS; (c) R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific Publications, Oxford, UK, 1990 Search PubMed; (d) T. Baer and W. L. Hase, Unimolecular Reaction Dynamics, Oxford University Press, Oxford, UK, 1996 Search PubMed; (e) D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, J. Phys. Chem., 1996, 100, 12771 CrossRef CAS; (f) W. L. Hase, Acc. Chem. Res., 1998, 31, 659 CrossRef CAS.
  8. (a) J. B. Delos, J. Chem. Phys., 1973, 59, 2365 CAS; (b) J. C. Tully, J. Chem. Phys., 1974, 61, 61 CrossRef CAS; (c) G. E. Zahr, R. K. Preston and W. H. Miller, J. Chem. Phys., 1975, 62, 1127 CrossRef CAS; (d) E. J. Heller and R. C. Brown, J. Chem. Phys., 1983, 79, 3336 CrossRef CAS; (e) A. J. Marks and D. L. Thompson, J. Chem. Phys., 1992, 96, 1911 CrossRef CAS; (f) S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys., 1995, 103, 8528 CrossRef CAS; (g) M. S. Topaler and D. G. Truhlar, J. Chem. Phys., 1997, 107, 392 CrossRef CAS; (h) D. K. Sahm and D. L. Thompson, Chem. Phys. Lett., 1993, 210, 175 CrossRef CAS.
  9. (a) Q. Cui, K. Morokuma and J. M. Bowman, J. Chem. Phys., 1999, 110, 9469 CrossRef; (b) K. Morokuma, Q. Cui and Z. Liu, Faraday Discuss., 1998, 110, 71 RSC; (c) Q. Cui and K. Morokuma, Theor. Chem. Acc., 1999, 102, 127 CrossRef CAS.
  10. The work described in ref. 9 also uses ab initio calculations to determine the parameters needed for applying a non-adiabatic statistical rate theory. Our approach, developed before publication of these papers, is very similar except for the point discussed below in ref. 21.
  11. (a) N. Koga and K. Morokuma, Chem. Phys. Lett., 1985, 119, 371 CrossRef CAS; (b) A. Farazdel and M. Dupuis, J. Comput. Chem., 1991, 12, 276 CAS; (c) F. Jensen, J. Am. Chem. Soc., 1992, 114, 1596 CrossRef CAS; (d) D. R. Yarkony, J. Phys. Chem., 1993, 97, 4407 CrossRef CAS; (e) M. J. Bearpark, M. A. Robb and H. B. Schlegel, Chem. Phys. Lett., 1994, 223, 269 CrossRef CAS; (f) K. M. Dunn and K. Morokuma, J. Phys. Chem., 1996, 100, 123 CrossRef CAS; (g) J. M. Anglada and J. M. Bofill, J. Comput. Chem., 1997, 18, 992 CrossRef CAS.
  12. J. N. Harvey, M. Aschi, H. Schwarz and W. Koch, Theor. Chem. Acc., 1998, 99, 95 CrossRef CAS.
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, UK, 1996 Search PubMed.
  14. See for example, (a) D. R. Yarkony, J. Am. Chem. Soc., 1992, 114, 5406 CrossRef CAS; (b) J. E. Stevens, Q. Cui and K. Morokuma, J. Chem. Phys., 1998, 108, 1544 CrossRef CAS; (c) A. A. Korkin, M. Nooijen, R. J. Bartlett and K. O. Christe, J. Phys. Chem. A, 1998, 102, 1837 CrossRef CAS; (d) D. R. Yarkony, J. Phys. Chem. A, 1998, 102, 5305 CrossRef CAS; (e) S. Wilsey, F. Bernardi, M. Olivucci, M. A. Robb, S. Murphy and W. Adam, J. Phys. Chem. A, 1999, 103, 1669 CrossRef CAS; (f) A. L. Kaledin, Q. Cui, M. C. Heaven and K. Morokuma, J. Chem. Phys., 1999, 111, 5004 CrossRef CAS; (g) M. R. Manaa and C. F. Chabalowski, Chem. Phys. Lett., 1999, 300, 619 CrossRef CAS.
  15. (a) J. N. Harvey, D. Schröder and H. Schwarz, Bull. Soc. Chim. Belg., 1997, 106, 447 CAS; (b) C. A. Schalley, J. N. Harvey, D. Schröder and H. Schwarz, J. Phys. Chem. A, 1998, 102, 1021 CrossRef CAS; (c) C. A. Schalley, S. Blanksby, J. N. Harvey, D. Schröder, W. Zummack, J. H. Bowie and H. Schwarz, Eur. J. Org. Chem., 1998, 1, 987 CrossRef; (d) M. Aschi, F. Grandinetti and V. Vinciguerra, Chem. Eur. J., 1988, 4, 2366 CrossRef CAS; (e) D. Schröder, C. Heinemann, H. Schwarz, J. N. Harvey, S. Dua, S. J. Blanksby and J. H. Bowie, Chem. Eur. J., 1998, 4, 2550 CrossRef CAS; (f) C. Rue, P. B. Armentrout, I. Kretzschmar, D. Schröder, J. N. Harvey and H. Schwarz, J. Chem. Phys., 1999, 110, 7858 CrossRef CAS; (g) M. Aschi and J. N. Harvey, J. Chem. Soc., Perkin Trans. 2, 1999, 1059 RSC; (h) M. Aschi and F. Grandinetti, J. Chem. Phys., 1999, 111, 6759 CrossRef CAS; (i) K. M. Smith, J. N. Harvey and R. Poli, Organometallics, submitted Search PubMed.
  16. For studies of reaction mechanisms involving conical intersections, see e.g. M. Garavelli, B. Frabboni, M. Fato, P. Celani, F. Bernardi, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 1999, 121, 1537 Search PubMed; D. R. Yarkony, Acc. Chem. Res., 1998, 31, 511 CrossRef CAS; F. Bernardi, M. Olivucci and M. A. Robb, Chem. Soc. Rev., 1996, 321 CrossRef CAS.
  17. K. Ohta and K. Morokuma, J. Phys. Chem., 1987, 91, 401 CrossRef CAS; A. Farazdel, M. Dupuis, E. Clementi and A. Avitam, J. Am. Chem. Soc., 1990, 112, 4206 CrossRef CAS; O. Kitao, H. Ushiyama and N. Miura, J. Chem. Phys., 1999, 110, 2936 CrossRef CAS.
  18. W. H. Miller, N. C. Handy and J. E. Adams, J. Chem. Phys., 1980, 72, 99 CrossRef CAS.
  19. If the MECP is truly a minimum within the seam of crossing, these frequencies are all positive and real. We note that this is not, in general, true of frequencies obtained by diagonalising the projected hessians of the two PESs. Using these hessians is equivalent to ignoring the curvature of the seam. As well as leading to two different sets of frequencies, one obtained from H1 and one from H2, this approach can also lead to imaginary frequencies even for a minimum on the seam. Our tests found this to be the case for the CH3O+ MECPs studied here, but not for the HC + N2 MECP studied in ref. 9, where only real frequencies are obtained. This is only by chance, however.
  20. See, e.g. refs. 8a–c,e,h; (a) A. J. Lorquet, J. C. Lorquet and W. Forst, Chem. Phys., 1980, 51, 253 CrossRef CAS; (b) A. H. H. Chang and D. R. Yarkony, J. Chem. Phys., 1993, 99, 6824 CrossRef CAS.
  21. N. Nakamura and S. Kato, J. Chem. Phys., 1999, 110, 9937 CrossRef.
  22. For leading references, see (a) M. M. Bursey, J. R. Hass, D. J. Harvan and C. A. Parker, J. Am. Chem. Soc., 1979, 101, 5485 CrossRef CAS; (b) P. C. Burgers and J. L. Holmes, Org. Mass Spectrom., 1984, 19, 452 CAS; (c) S.-C. Kuo, Z. Zhang, R. B. Klemm, J. F. Liebman, L. J. Stief and F. L. Nesbitt, J. Phys. Chem., 1994, 98, 4026 CrossRef CAS.
  23. For other calculations on the [C,H3,O]+ system, see ref. 14a, L. A. Curtiss, L. D. Kock and J. A. Pople, J. Chem. Phys., 1991, 95, 4040 Search PubMed.
  24. T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007 CrossRef CAS.
  25. The values reported in ref. 1 are in each case the magnitude of the two identical non-zero singlet-triplet matrix elements, which explains the apparent diefference with the rms values mentioned here.
  26. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov and J. A. Pople, J. Chem. Phys., 1998, 109, 7764 CrossRef CAS.
  27. For an example of an RRKM calculation using anharmonic vibrational energy levels, see K. M. Christoffel and J. M. Bowman, J. Phys. Chem. A, 1999, 103, 3020 Search PubMed.
  28. J. Villà, J. C. Corchado, A. González-Lafont, J. M. Lluch and D. G. Truhlar, J. Phys. Chem. A, 1999, 103, 5061 CrossRef CAS and references therein.
  29. J. J. Wang, D. J. Smith and R. Grice, J. Phys. Chem. A, 1997, 101, 3293 CrossRef CAS and references therein.
  30. B. Leyh-Nihant and J. C. Lorquet, J. Chem. Phys., 1988, 88, 5606 CrossRef CAS.
  31. For a discussion of such cases, see L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl., 1972, 11, 92 Search PubMed.
  32. T. G. Lee, S. C. Park and M. S. Kim, J. Chem. Phys., 1996, 104, 4517 CrossRef CAS see also Y. M. Rhee, T. G. Lee, S. C. Park and M. S. Kim, J. Chem. Phys., 1997, 106, 1003 Search PubMed.
  33. Gamess-USA (version of 1st December 1998), M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su and T. L. Windus together with M. Dupuis and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347 Search PubMed.
  34. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1989 Search PubMed.
  35. R. Schinke, Photodissociation Dynamics, Cambridge University Press, Cambridge, UK, 1993, ch. 5, and references therein Search PubMedAlso see R. Schinke, J. Phys. Chem., 1988, 92, 3195 Search PubMed.
  36. It is to be noted that the Wigner-generated initial conditions correspond to initial energies well above the MECP and the TS. Also, there does not appear to be a very high barrier on the singlet surface separating the MECP region from the CH2OH+ minimum. Accordingly, 59 of the 400 trajectories started at the MECP, and 67 of those started at the TS, were observed to enter this CH2OH+ minimum. The KER results are derived from the remaining 341 (333) trajectories.
  37. E. Uggerud and T. Helgaker, J. Am. Chem. Soc., 1992, 114, 4265 CrossRef CAS.
  38. G. Hvistendahl and E. Uggerud, Org. Mass. Spectrom., 1991, 26, 67 CAS.
  39. For a review on choosing initial conditions for classical trajectories, see G. H. Peslherbe, H. Wang and W. L. Hase, Adv. Chem. Phys., 1999, 105, 171 Search PubMed.
  40. W. Chen, W. L. Hase and H. B. Schlegel, Chem. Phys. Lett., 1994, 228, 436 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.