Influence of the distance between ionizable groups on the protonation behavior of various hexaamines

(Note: The full text of this document is currently only available in the PDF Version )

Rene′ C. van Duijvenbode, Anton Rajanayagam, Ger J. M. Koper, Anton Rajanayagam, Ger J. M. Koper,, Michal Borkovec, Wolfgang Paulus, Ulrich Steuerle, Lukas Häu , Michal Borkovec, Wolfgang Paulus, Ulrich Steuerle and Lukas Häu


Abstract

A synthesis route for N,N,N′,N′-tetraaminoethyl-1,2-ethylenediamine, N,N,N′,N′-tetraaminopropyl-1,2-ethylenediamine, N,N,N′,N′-tetraaminopropyl-1,3-propylenediamine and N,N,N′,N′-tetraaminopropyl-1,4-butylenediamine is presented. These molecules differ from each other in the number of carbon atoms between the six amino groups. This results in different protonation behavior. Potentiometric titrations are performed in 0.1 M and 1.0 M KCl, and the six macroscopic protonation constants are obtained from these curves. An Ising model with a limited number of microscopic protonation constants and short-ranged pair interactions describes the protonation behavior quantitatively. The results are compared to those of other, similar molecules. The advantage of the Ising model over empirical relations such as the Taft equations is the more systematic approach with which the titration curves of more complex molecules can be described. The values for the Ising model parameters obtained here can be used to predict the protonation behavior of more complex, in particular larger, polyamines.


References

  1. D. D. Perrin, B. Dempsey and E. P. Serjeant, pKa Prediction for Organic Acids and Bases, Chapman and Hall, London, 1981 Search PubMed.
  2. R. W. Taft Jr, in Steric Effects in Organic Chemistry, ed. M. S. Newman, John Wiley and Sons, Inc., New York, 1956, p. 556ff Search PubMed.
  3. R. A. Marcus, J. Phys. Chem., 1954, 58, 621 CrossRef CAS.
  4. A. Katchalsky, J. Mazur and P. Spitnik, J. Polym. Sci., 1957, 23, 513 Search PubMed.
  5. T. Kitano, S. Kawaguchi, K. Ito and A. Minakata, Macromolecules, 1987, 20, 1598 CrossRef CAS.
  6. R. Smits, G. J. M. Koper and M. Mandel, J. Phys. Chem., 1993, 97, 5745 CrossRef CAS.
  7. M. Borkovec and G. J. M. Koper, Prog. Colloid Polym. Sci., 1998, 109, 142 Search PubMed.
  8. M. Borkovec and G. J. M. Koper, J. Phys. Chem., 1994, 98, 6038 CrossRef CAS.
  9. R. C. van Duijvenbode, M. Borkovec and G. J. M. Koper, Polymer, 1998, 39, 2657 CrossRef CAS.
  10. F. E. Condon, J. Am. Chem. Soc., 1965, 87, 4481 CrossRef CAS.
  11. F. E. Condon, J. Am. Chem. Soc., 1965, 87, 4485 CrossRef CAS.
  12. H. K. Hall Jr, J. Am. Chem. Soc., 1957, 79, 5441 CrossRef CAS.
  13. T. L. Hill, An Introduction to Statistical Thermodynamics, Dover, New York 1986 Search PubMed.
  14. L. Häußling and W. Paulus, EP 790 976, BASF AG, 09.11. 1995.
  15. H. Distler and K. L. Hock, EP 045386, BASF AG, 08.07.81.
  16. P. Paoletti, R. Walser, A. Vacca and G. Schwarzenbach, Helv. Chim. Acta, 1971, 54, 243 CAS.
  17. E. Garcia-Espanña, M. Micheloni, P. Paoletti and A. Bianchi, Inorg. Chem., 1986, 25, 1435 CrossRef.
  18. R. M. Smith and A. E. Martell, Critical Stability Constants, Plenum Press, New York, 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.