Techniques for quantifying gaseous HOCl using atmospheric pressure ionization mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Krishna L. Foster, Tracy E. Caldwell, Thorsten Benter, Sarka Langer, John C. Hemminger and Barbara J. Finlayson-Pitts


Abstract

HOCl is speculated to be an important intermediate in mid-latitude marine boundary layer chemistry and at high latitudes in spring-time when surface-level O3 depletion occurs. However, techniques do not currently exist to measure HOCl in the troposphere. We demonstrate that atmospheric pressure ionization mass spectrometry (API-MS) is a highly sensitive and selective technique which has promise for HOCl measurements both in laboratory systems and in field studies. While HOCl can be measured as the (HOCl·O2)- adduct with air as the chemical ionization (CI) reagent gas, the intensity of this adduct is sensitive to the presence of acids and to the amount of water vapor, complicating its use for quantitative measurements. However, the addition of bromoform vapor to the corona discharge region forms bromide ions that attach to HOCl and allow its detection via the (HOCl·Br)- adduct. The ion–molecule chemistry associated with the use of air or bromoform as the CI reagent gas is discussed, with particular emphasis on the effects of relative humidity and gas phase acid concentrations. HOCl is quantified by measuring the amount of Cl2 formed by its heterogeneous reaction with condensed-phase HCl/H2O. Detection limits are ∽3 parts per billion (ppb) using air as the CI reagent gas and ∽0.9 ppb using bromoform. The atmospheric implications of this work are discussed.


References

  1. L. A. Barrie, J. W. Bottenheim, R. C. Schnell, P. J. Crutzen and R. A. Rasmussen, Nature, 1988, 334, 138 CrossRef CAS.
  2. S.-M. Fan and D. J. Jacob, Nature, 1992, 359, 522 CrossRef CAS.
  3. J. C. McConnell, G. S. Henderson, L. Barrie, J. Bottenheim, H. Niki, C. H. Langford and E. M. J. Templeton, Nature, 1992, 355, 150 CrossRef CAS.
  4. B. T. Jobson, H. Niki, Y. Yokouchi, J. Bottenheim, F. Hopper and R. Leaitch, J. Geophys. Res., 1994, 99, 25, 355.
  5. R. Sander and P. J. Crutzen, J. Geophys. Res., 1996, 101, 9121 CrossRef CAS.
  6. R. Vogt, P. J. Crutzen and R. Sander, Nature, 1996, 383, 327 CrossRef CAS.
  7. K. Kumar and D. W. Margerum, Inorg. Chem., 1987, 26, 2706 CrossRef CAS.
  8. J. P. D. Abbatt and J. B. Nowak, J. Phys. Chem. A, 1997, 101, 2131 CrossRef CAS.
  9. K. D. Fogelman, D. M. Walker and D. W. Margerum, Inorg. Chem., 1989, 28, 986 CrossRef CAS.
  10. R. C. Troy and D. W. Margerum, Inorg. Chem., 1991, 30, 3538 CrossRef CAS.
  11. D. O. De Haan, T. Brauers, K. Oum, J. Stutz, T. Nordmeyer and B. J. Finlayson-Pitts, Int. Rev. Phys. Chem., 1999, 18, 343 CrossRef CAS.
  12. C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast and C. M. Berkowitz, Nature, 1998, 394, 353 CrossRef CAS.
  13. W. C. Keene, J. R. Maben, A. A. P. Pszenny and J. N. Galloway, Environ. Sci. Technol., 1993, 27, 866 CAS.
  14. A. A. P. Pszenny, W. C. Keene, D. J. Jacob, S. Fan, J. R. Maben, M. P. Zweto, M. Springer-Young and J. N. Galloway, Geophys. Res. Lett., 1993, 20, 699 CrossRef CAS.
  15. G. A. Impey, P. B. Shepson, D. R. Hastie, L. A. Barrie and K. G. Anlauf, J. Geophys. Res., 1997, 102, 15999 CAS.
  16. G. A. Impey, P. B. Shepson, D. R. Hastie, L. A. Barrie and K. G. Anlauf, J. Geophys. Res., 1997, 102, 16005 CAS.
  17. C. W. Spicer, D. V. Kenny, W. J. Shaw, K. M. Busness and E. G. Chapman, Environ. Sci. Technol., 1994, 28, 412A CAS.
  18. V. Kotasek, Master's Thesis, University of Toronto, Toronto, 1981.
  19. S. Schmidt, M. F. Appel, R. M. Garnica, R. N. Schindler and T. Benter, Anal. Chem., 1999, 71, 3721 CrossRef CAS.
  20. T. E. Caldwell, K. L. Foster, T. Benter, S. Langer, J. C. Hemminger and B. J. Finlayson-Pitts, J. Phys. Chem. A, 1999, 103, 8231 CrossRef CAS.
  21. D. R. Hanson and A. R. Ravishankara, J. Phys. Chem., 1992, 96, 2682 CrossRef CAS.
  22. J. P. D. Abbatt and M. J. Molina, Geophys. Res. Lett., 1992, 19, 461 CAS.
  23. L. T. Chu, M.-T. Leu and L. F. Keyser, J. Phys. Chem., 1993, 97, 12798 CrossRef CAS.
  24. D. J. Donaldson, A. R. Ravishankara and D. R. Hanson, J. Phys. Chem. A, 1997, 101, 4717 CrossRef CAS.
  25. J. W. T. Spinks and R. J. Woods, An Introduction to Radiation Chemistry, Wiley, New York, 1990 Search PubMed.
  26. D. Vogt, Int. J. Mass Spectrom. Ion Phys., 1969, 3, 81 CrossRef CAS.
  27. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, 652.
  28. F. C. Fehsenfeld and E. E. Ferguson, J. Chem. Phys., 1974, 61, 3181 CrossRef CAS.
  29. F. C. Zeisberg, Chem. Metall. Eng., 1925, 32, 326 Search PubMed.
  30. I. Dzidic, D. I. Carroll, R. N. Stillwell and E. C. Horning, J. Am. Chem. Soc., 1974, 96, 5258 CrossRef CAS.
  31. R. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 1973, 95, 4050 CrossRef CAS.
  32. J. L. McCrumb and F. Arnold, Nature, 1981, 294, 136 CAS.
  33. C. W. Spicer, D. V. Kenny, G. F. Ward, I. H. Billick and N. P. Leslie, Air Waste, 1994, 44, 163 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.