Is there significant intermolecular charge transfer in the ground state of the HCN···ICI complex? An answer from rotational spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

W. A. Herrebout, A. C. Legon and E. R. Waclawik


Abstract

The ground-state rotational spectra of the four isotopomers HC14N···I35Cl, DC14N···I35Cl, HC15N···I35Cl and HC15N···I37Cl of a linear complex of hydrogen cyanide and iodine monochloride were detected by pulsed-jet, Fourier transform microwave spectroscopy and analysed to give rotational constants B0, centrifugal distortion constants DJ, nuclear quadrupole coupling constants χaa(I), χaa(Cl) and χaa(14N), and iodine spin-rotation coupling constants Mbb(I). Detailed interpretations of various spectroscopic constants on the basis of simple models yielded a range of properties of the complex. The order of the nuclei was found to be HCN···ICl with r(N···I)=2.850(1) Å. The changes in the nuclear quadrupole coupling constants on complex formation lead to the conclusion that a fraction δi=0.021(4) of an electron is transferred from N to I while the polarisation of the ICl subunit by the HCN subunit, and viceversa, can be expressed in terms of transfers of fractions δp(Cl)=0.075(1) and δp(N)=0.07(2) of electrons within ICl and HCN to Cl and N, respectively. The intermolecular stretching force constant kσ has the value 14.5 N m-1. The properties of HCN···ICl are compared with those of other HCN···XY complexes, where XY=F2, Cl2, BrCl and ClF and some general conclusions are drawn. The intermolecular charge transfer in HCN···ICl is similar in magnitude to that in OC···ICl but smaller than in the other n-pair donor type complexes H2S···ICl and H3N···ICl, a result consistent with the order of the energies required to remove an electron from the n-pair orbitals in the series of Lewis bases HCN, CO, H2S and NH3.


References

  1. A. C. Legon, Chem. Eur. J., 1998, 4, 1890 CrossRef CAS.
  2. A. C. Legon, Angew. Chem. Int. Ed. Engl., 1999, 38, 2686 CrossRef.
  3. J. B. Davey, A. C. Legon and E. R. Waclawik, Chem. Phys. Lett., 1999, 306, 133 CrossRef CAS.
  4. J. B. Davey, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 1999, 1, 3097 RSC.
  5. J. B. Davey and A. C. Legon, Phys. Chem. Chem. Phys., 1999, 1, 3721 RSC.
  6. J. M. A. Thumwood and A. C. Legon, Chem. Phys. Lett., 1999, 310, 88 CrossRef CAS.
  7. A. C. Legon and E. R. Waclawik, Chem. Phys. Lett., in the press Search PubMed.
  8. E. R. Waclawik and A. C. Legon, Phys. Chem. Chem. Phys., 1999, 1, 4695 RSC.
  9. D. W. Turner, C. Baker, A. D. Baker and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London, 1970 Search PubMed.
  10. R. T. Weidmann and M. G. White, J. Chem. Phys., 1995, 102, 5141 CrossRef.
  11. T. J. Balle and W. H. Flygare, Rev. Sci. Instrum., 1981, 52, 33 CrossRef CAS.
  12. A. C. Legon, in Atomic and Molecular Beam Methods, ed. G. Scoles, Oxford University Press, Oxford, 1992, vol. 2, ch. 9 Search PubMed.
  13. A. C. Legon and C. A. Rego, J. Chem. Soc., Faraday Trans., 1990, 86, 1915 RSC.
  14. H. M. Pickett, J. Mol. Spectrosc., 1991, 148, 371 CrossRef CAS.
  15. C. H. Townes and B. P. Dailey, J. Chem. Phys., 1949, 17, 782 CrossRef CAS; C. H. Townes and A. L. Schawlow, Microwave Spectroscopy, McGraw-Hill, New York, 1955 Search PubMed.
  16. F. C. DeLucia and W. Gordy, Phys. Rev. A, 1969, 187, 58 CrossRef CAS.
  17. W. Gordy and R. L. Cook, Microwave Molecular Spectra, in Techniques of Chemistry, Wiley-Interscience, New York, 1984, vol. XVIII, ch. 14 Search PubMed.
  18. E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, Z. Naturforsh., 1976, 31a, 1394 Search PubMed.
  19. K. R. Leopold, G. T. Fraser and W. Klemperer, J. Chem. Phys., 1984, 80, 1039 CrossRef CAS.
  20. C. C. Costain, J. Chem. Phys., 1958, 63, 864 CrossRef CAS.
  21. P. W. Fowler, A. C. Legon and S. A. Peebles, Chem. Phys. Lett., 1994, 226, 501 CrossRef CAS.
  22. D. J. Millen, Can. J. Chem., 1985, 63, 1477 CAS.
  23. S. A. Cooke, G. Cotti, C. M. Evans and J. H. Holloway, Chem. Phys. Lett., 1996, 262, 308 CrossRef CAS.
  24. A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1993, 89, 4157 RSC.
  25. K. Hinds and A. C. Legon, Chem. Phys. Lett., 1995, 240, 467 CrossRef CAS.
  26. K. Hinds, A. C. Legon and J. H. Holloway, Mol. Phys., 1996, 88, 673 CrossRef CAS.
  27. A. C. Legon, Chem. Phys. Lett., 1997, 279, 55 CrossRef CAS.
  28. K. P. R. Nair, J. Hoeft and E. Tiemann, Chem. Phys. Lett., 1973, 58, 153 CrossRef CAS.
  29. B. Fabricant and J. S. Muenter, J. Chem. Phys., 1977, 66, 5274 CrossRef CAS.
  30. E. Herbst and W. E. Steinmetz, J. Chem. Phys., 1972, 56, 5342 CrossRef CAS.
  31. S. A. Peebles, P. W. Fowler and A. C. Legon, unpublished observations.
  32. A. C. Legon, J. Chem. Soc., Chem. Commun., 1998, 2585 RSC.
  33. A. C. Legon and D. J. Millen, J. Am. Chem. Soc., 1987, 109, 356 CrossRef CAS.
  34. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 3rd edn., 1960, p. 260 Search PubMed.
  35. A. C. Legon, Chem. Phys. Lett., 1995, 237, 291 CrossRef CAS.
  36. S. A. Peebles, P. W. Fowler and A. C. Legon, Chem. Phys. Lett., 1995, 240, 130 CrossRef CAS.
  37. A. C. Legon, J. Chem. Soc., Chem. Commun., 1998, 2737 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.