Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reactions of solid carbon with the metal carbonates

(Note: The full text of this document is currently only available in the PDF Version )

Kenzo Nagase, Takanao Shimodaira, Masaki Itoh and Yutong Zheng


Abstract

The decomposition processes of alkali or alkaline earth carbonates with a large excess of carbon, and the reverse Boudouard reaction given by CO2/C→2CO over metal carbonates, were compared. The carbonates of Li+, Na+, K+, Cs+, Sr2+ and Ba2+ generated CO exclusively by an intermolecular redox reaction given by CO32-+C→2CO+O2-. The reverse Boudouard reaction over these metal carbonates at 700°C proceeded at a steady rate until just before the carbon was completely consumed, and in the cases of Li+, Sr2+ and Ba2+, the rates agreed with the initial rates of the intermolecular redox reaction. On the other hand, the rates over the carbonates of Na+, K+ and Cs+, the oxides of which undergo a disproportionation reaction to produce gas-phase metal and liquid-phase metal peroxide, were much higher than the initial rates of the intermolecular redox reaction. This discrepancy can be explained by the presence of a catalytic process on the metal-covered surface of the silica wool that was used for preventing the highly basic gas-phase metals from escaping.


References

  1. B. Hohlein, R. Menzer and J. Range, Appl. Catal., 1981, 1, 125 Search PubMed ; A. T. Ashcroft, A. K. Cheetham, M. L. H. Green and P. D. F. Vernon, Nature, 1991, 352, 225 CrossRef CAS .
  2. J. R. Rostrup-Nielsen, Catal. Today, 1993, 18, 125 CrossRef CAS ; J. P. Van hook, Catal. Rev. Sci. Eng., 1980, 21, 1 Search PubMed .
  3. D. A. Hickman and L. D. Schmidt, Science, 1993, 259, 343 CrossRef CAS ; K. Otsuka, Y. Wang, E. Sunada and I. Yamanaka, J. Catal., 1998, 175, 152 CrossRef CAS .
  4. J. P. Hindermann, G. L. Hutchings and A. Kiennemann, Catal. Rev. Sci. Eng., 1993, 35, 1 Search PubMed .
  5. D. W. McKee, Carbon, 1982, 20, 59 CAS ; Y. Tamai, H. Watanabe and A. Tomita, Carbon, 1977, 15, 103 CAS ; D. Fox and A. H. White, Ind. End. Chem., 1931, 23, 259 Search PubMed ; A. Tomita, T. Takarada and Y. Tamai, Fuel, 1983, 62, 62 CAS ; R. J. Lang and R. C. Neavel, Fuel, 1982, 61, 620 CAS ; E. J. Hippo, R. G. Jenkins and P. L. Walker, Jr., Fuel, 1979, 58, 338 CAS ; M. D. Foster and K. F. Jensen, Fuel, 1990, 69, 88 CAS .
  6. D. W. McKee and D. Chatterji, Carbon, 1978, 16, 53 CAS .
  7. W. W. Wendlandt, Thermal analysis, Wiley, New York, 1986 Search PubMed .
  8. K. Nagase, H. Yokobayashi, K. Muraishi and M. Kikuchi, Thermochim. Acta, 1991, 177, 273 CrossRef CAS .
  9. J. Paul, Nature, 1986, 323, 701 CAS ; M. D. Weisel, J. L. Robbins and F. M. Hoffmann, J. Phys. Chem., 1993, 97, 9441 CrossRef CAS ; C. de Leitenburg, A. Trovarelli and J. Kaspar, J. Catal., 1997, 166, 98 CrossRef CAS .
  10. J. Nerlov, S. V. Christensen, S. Weichel, E. H. Pedersen and P. J. Moller, Surf. Sci., 1997, 371, 321 CrossRef CAS .
  11. The Merck Index, ed. S. Budabari, Merck & Co., New Jersey, 12th edn., 1996, p. 1480 Search PubMed .
  12. A. E. Newkirk and I. Aliferis, Anal. Chem., 1958, 30, 982 CrossRef CAS .
  13. W. W. Wendlandt, Thermal analysis: Chemical analysis, ed. P. J. Elving and J. D. Winefordner, Wiley, New York, 1986, vol. 19, p. 181 Search PubMed .
  14. S. P. S. Andrew, Ind. End. Chem. Prod. Res. Develop., 1969, 8, 321 Search PubMed .
  15. S. Ruf and G. Emig, Appl. Catal. A, 1997, 161, 19 CrossRef .
  16. L. M. Maderia, R. M. Martin-Aranda, F. J. Maldonado-Hodar, J. L. G. Fierro and M. F. Portela, J. Catal., 1997, 169, 469 CrossRef CAS ; C. C. Hsu, H. L. Tung, W. H. Cheng, J. F. Lu, C. Y. Shiau and T. H. Liu, Appl. Catal. A, 1998, 170, 215 CrossRef CAS ; I. V. Yentekakis, R. M. Lambert, M. S. Tilehov, M. Konsolakis and V. Kiousis, J. Catal., 1998, 176, 82 CrossRef CAS ; M. P. McDaniel, D. R. Witt and E. A. Benham, J. Catal., 1998, 176, 344 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.