Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reactions of solid carbon with the metal carbonates

(Note: The full text of this document is currently only available in the PDF Version )

Kenzo Nagase, Takanao Shimodaira, Masaki Itoh and Yutong Zheng


Abstract

The decomposition processes of alkali or alkaline earth carbonates with a large excess of carbon, and the reverse Boudouard reaction given by CO2/C→2CO over metal carbonates, were compared. The carbonates of Li+, Na+, K+, Cs+, Sr2+ and Ba2+ generated CO exclusively by an intermolecular redox reaction given by CO32-+C→2CO+O2-. The reverse Boudouard reaction over these metal carbonates at 700°C proceeded at a steady rate until just before the carbon was completely consumed, and in the cases of Li+, Sr2+ and Ba2+, the rates agreed with the initial rates of the intermolecular redox reaction. On the other hand, the rates over the carbonates of Na+, K+ and Cs+, the oxides of which undergo a disproportionation reaction to produce gas-phase metal and liquid-phase metal peroxide, were much higher than the initial rates of the intermolecular redox reaction. This discrepancy can be explained by the presence of a catalytic process on the metal-covered surface of the silica wool that was used for preventing the highly basic gas-phase metals from escaping.


References

  1. B. Hohlein, R. Menzer and J. Range, Appl. Catal., 1981, 1, 125 Search PubMed; A. T. Ashcroft, A. K. Cheetham, M. L. H. Green and P. D. F. Vernon, Nature, 1991, 352, 225 CrossRef CAS.
  2. J. R. Rostrup-Nielsen, Catal. Today, 1993, 18, 125 CrossRef CAS; J. P. Van hook, Catal. Rev. Sci. Eng., 1980, 21, 1 Search PubMed.
  3. D. A. Hickman and L. D. Schmidt, Science, 1993, 259, 343 CrossRef CAS; K. Otsuka, Y. Wang, E. Sunada and I. Yamanaka, J. Catal., 1998, 175, 152 CrossRef CAS.
  4. J. P. Hindermann, G. L. Hutchings and A. Kiennemann, Catal. Rev. Sci. Eng., 1993, 35, 1 Search PubMed.
  5. D. W. McKee, Carbon, 1982, 20, 59 CAS; Y. Tamai, H. Watanabe and A. Tomita, Carbon, 1977, 15, 103 CAS; D. Fox and A. H. White, Ind. End. Chem., 1931, 23, 259 Search PubMed; A. Tomita, T. Takarada and Y. Tamai, Fuel, 1983, 62, 62 CAS; R. J. Lang and R. C. Neavel, Fuel, 1982, 61, 620 CAS; E. J. Hippo, R. G. Jenkins and P. L. Walker, Jr., Fuel, 1979, 58, 338 CAS; M. D. Foster and K. F. Jensen, Fuel, 1990, 69, 88 CAS.
  6. D. W. McKee and D. Chatterji, Carbon, 1978, 16, 53 CAS.
  7. W. W. Wendlandt, Thermal analysis, Wiley, New York, 1986 Search PubMed.
  8. K. Nagase, H. Yokobayashi, K. Muraishi and M. Kikuchi, Thermochim. Acta, 1991, 177, 273 CrossRef CAS.
  9. J. Paul, Nature, 1986, 323, 701 CAS; M. D. Weisel, J. L. Robbins and F. M. Hoffmann, J. Phys. Chem., 1993, 97, 9441 CrossRef CAS; C. de Leitenburg, A. Trovarelli and J. Kaspar, J. Catal., 1997, 166, 98 CrossRef CAS.
  10. J. Nerlov, S. V. Christensen, S. Weichel, E. H. Pedersen and P. J. Moller, Surf. Sci., 1997, 371, 321 CrossRef CAS.
  11. The Merck Index, ed. S. Budabari, Merck & Co., New Jersey, 12th edn., 1996, p. 1480 Search PubMed.
  12. A. E. Newkirk and I. Aliferis, Anal. Chem., 1958, 30, 982 CrossRef CAS.
  13. W. W. Wendlandt, Thermal analysis: Chemical analysis, ed. P. J. Elving and J. D. Winefordner, Wiley, New York, 1986, vol. 19, p. 181 Search PubMed.
  14. S. P. S. Andrew, Ind. End. Chem. Prod. Res. Develop., 1969, 8, 321 Search PubMed.
  15. S. Ruf and G. Emig, Appl. Catal. A, 1997, 161, 19 CrossRef.
  16. L. M. Maderia, R. M. Martin-Aranda, F. J. Maldonado-Hodar, J. L. G. Fierro and M. F. Portela, J. Catal., 1997, 169, 469 CrossRef CAS; C. C. Hsu, H. L. Tung, W. H. Cheng, J. F. Lu, C. Y. Shiau and T. H. Liu, Appl. Catal. A, 1998, 170, 215 CrossRef CAS; I. V. Yentekakis, R. M. Lambert, M. S. Tilehov, M. Konsolakis and V. Kiousis, J. Catal., 1998, 176, 82 CrossRef CAS; M. P. McDaniel, D. R. Witt and E. A. Benham, J. Catal., 1998, 176, 344 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.