The redox reaction and induced structural changes of 5-substituted indole films

(Note: The full text of this document is currently only available in the PDF Version )

Andrew R. Mount and Mark T. Robertson


Abstract

The electrochemical behaviour of two types of electrodeposited redox active indole trimer films, 5-cyanoindole (CI) and indole-5-carboxylic acid (ICA), have been studied in acetonitrile electrolyte systems. Chronoamperometry, cyclic voltammetry and transmission line analysis of ac impedance data have been used to monitor the kinetics and mechanism of the electron transfer process with prolonged redox cycling. As-deposited films of CI and ICA each show high electronic conduction, consistent with the films behaving as a porous metal. CI films show a relatively large, potential dependent barrier to ion insertion, consistent with a compact, poorly solvated structure. In contrast, ICA films display a higher film capacitance and a lower barrier to ion insertion, indicating a more open and solvated film. On prolonged slow redox cycling over several days, CI shows little change in coat structure, whereas ICA shows a marked change in its redox reaction, consistent with a change in the mechanism of electron transfer to redox hopping, and in the mechanism of ion transfer to cation insertion. This can be explained by the irreversible deprotonation of a carboxylic acid substituent on the trimer centre during oxidation, which induces a change in redox mechanism and film structure. Transmission line analysis of small amplitude ac impedance data is shown to be an excellent method for monitoring this and other such changes in modified electrode systems.


References

  1. J. G. Mackintosh and A. R. Mount, J. Chem. Soc., Faraday Trans., 1994, 90, 1121 RSC.
  2. J. G. Mackintosh, C. R. Redpath, A. C. Jones, P. R. R. Langridge-Smith and A. R. Mount, J. Electroanal. Chem., 1995, 388, 179 CrossRef.
  3. J. G. Mackintosh, A. R. Mount and D. Reed, Magn. Reson. Chem., 1994, 32, 559 CAS.
  4. J. G. Mackintosh, S. J. Wright, P. R. R. Langridge-Smith and A. R. Mount, J. Chem. Soc., Faraday Trans., 1996, 92, 4109 RSC.
  5. A. R. Mount and A. D. Thomson, J. Chem. Soc., Faraday Trans., 1998, 94, 553 RSC.
  6. P. N. Bartlett and J. Farrington, J. Electroanal. Chem., 1989, 261, 471 CrossRef CAS.
  7. P. N. Bartlett and J. Farrington, Bull. Electrochem., 1992, 8, 208 Search PubMed.
  8. W. J. Albery, Z. Chen, B. R. Horrocks, A. R. Mount, P. J. Wilson, D. Bloor, A. T. Monkman and C. E. Elliot, Faraday Discuss. Chem. Soc., 1989, 88, 247 RSC.
  9. W. J. Albery, C. M. Elliott and A. R. Mount, J. Electroanal. Chem., 1990, 288, 15 CrossRef CAS.
  10. W. J. Albery and A. R. Mount, J. Chem. Soc., Faraday Trans., 1993, 89, 2487 RSC.
  11. W. J. Albery and A. R. Mount, J. Chem. Soc., Faraday Trans., 1994, 90, 1115 RSC.
  12. W. J. Albery and A. R. Mount, Electroactive Polymer Electrochemistry Part 1: Fundamentals, Plenum Press, New York, 1994, p. 443 Search PubMed.
  13. F. G. Donnan, Z. Elektrochem., 1911, 17, 102 Search PubMed.
  14. F. G. Donnan, J. Membr. Sci., 1995, 100, 45 CrossRef CAS.
  15. S. W. Feldberg, J. Am. Chem. Soc., 1984, 106, 4671 CrossRef.
  16. M. E. G. Lyons, Faraday Discuss. Chem. Soc., 1989, 88, 293 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.