Static and swinging chemical waves in a two-interface dynamics on a ring

(Note: The full text of this document is currently only available in the PDF Version )

R. Sultan and S. Jaafar


Abstract

An existing scaling model of a reaction–diffusion system is extended to a circular trajectory. The equations describe the evolution of a slow (X) and a fast (Y) concentration variable. The fast variable jumps between extreme values across a reaction interface as the rate parameter becomes very large. The model is reduced to one equation for the dynamics of the smooth (slow) variable while the Y-jumps occur at two interfaces spatially located on a ring. The equation is solved subject to 2π-periodicity conditions on the ring and continuity conditions at the interfaces. Both static (with zero velocity) and moving (with velocity v) wave solutions are found. An analogy is then drawn between our reaction–diffusion system and oscillating chemical reactions such as the Belousov–Zhabotinskii (BZ) reagent, confined to a torus-shaped container. A toroidal thin tube with a very small diameter could simulate the ring geometry. The conjectured waves capture the oscillations of the catalyst (ferroin), with the maxima and minima corresponding to the ferroin and ferriin, spatial domains in the doughnut, respectively. The non-stationary wave solutions predict a migration of those domains yielding swinging (back and forth) patterns along the ring. The azimuthal position of the interfaces exhibits temporal oscillations. Thus these simulations suggest interesting experiments on spatio–temporal patterns in excitable chemical media in annular reactors.


References

  1. Chemical Waves and Patterns, ed. R. Kapral and K. Showalter, Kluwer, Dordrecht, Netherlands, 1995 Search PubMed.
  2. P. Gray and S. K. Scott, Chemical Oscillations and Instabilities, Oxford University Press, Oxford, UK, 1990 Search PubMed.
  3. Dissipative Structures and Chaos, ed. H. Mori and Y. Kuramoto, Springer, Berlin, 1998 Search PubMed.
  4. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977 Search PubMed.
  5. Oscillations and Traveling Waves in Chemical Systems, ed. R. Field and M. Burger, Wiley, New York, 1985 Search PubMed.
  6. R. J. Field and F. W. Schneider, J. Chem. Educ., 1989, 66, 195 CAS.
  7. J. Maselko and K. Showalter, Nature, 1989, 339, 609 CAS.
  8. Á. Tóth, V. Gáspár and K. Showalter, J. Phys. Chem., 1994, 98, 522 CrossRef CAS.
  9. O. Lev, M. Sheintuch and L. M. Yarnitzky, Nature, 1988, 336, 458 CrossRef CAS.
  10. R. D. Otterstedt, P. J. Plath, N. I. Jaeger and J. L. Hudson, J. Chem. Soc., Faraday Trans., 1996, 92, 2933 RSC.
  11. S. L. Lane and D. Luss, Phys. Rev. Lett., 1993, 70, 830 CrossRef CAS.
  12. S. Y. Yamamoto, C. M. Surko, M. B. Maple and R. K. Pina, Phys. Rev. Lett., 1995, 74, 4071 CrossRef CAS.
  13. A. M. Turing, Philos. Trans. R. Soc. London, Ser. B, 1952, 237, 37 Search PubMed.
  14. V. Castets, E. Dulos, J. Boissonade and P. De Kepper, Phys. Rev. Lett., 1990, 64, 2953 CrossRef CAS.
  15. P. De Kepper, V. Castets, E. Dulos and J. Boissonade, Physica D, 1991, 49, 161 CrossRef CAS.
  16. Z. Fei, B. J. Green and J. L. Hudson, J. Phys. Chem. B, 1999, 103, 2178 CrossRef CAS.
  17. A. Lázár, Z. Noszticzius, H. Försterling and Z. Nagy-Ungvarai, Physica D, 1995, 84, 112 CrossRef CAS.
  18. P. C. Fife, in Nonequilibrium Dynamics in Chemical Systems, ed. C. Vidal and A. Pacault, Springer, Berlin, 1984, p. 76 Search PubMed.
  19. R. Sultan and P. Ortoleva, J. Chem. Phys., 1986, 84, 6781 CrossRef CAS.
  20. R. Sultan and P. Ortoleva, J. Chem. Phys., 1986, 85, 5068 CrossRef CAS.
  21. P. J. Ortoleva, Nonlinear Chemical Waves, Wiley, Chichester, 1992 Search PubMed.
  22. H. Willebrand, T. Hüntler, F. J. Niedernostheide, R. Dohmen and H. G. Purwins, Phys. Rev. A, 1992, 45, 8766 CrossRef.
  23. U. Middya, D. Luss and M. Sheintuch, J. Chem. Phys., 1994, 100, 3568 CrossRef CAS.
  24. R. Fitzhugh, Biophys. J., 1961, 1, 445; J. S. Nagumo, S. Arimoto and S. Yoshizawa, Proc. IRE, 1962, 50, 2061 Search PubMed.
  25. T. Nomura and L. Glass, Phys. Rev. E, 1996, 53, 6353 CrossRef CAS.
  26. L. Boersma, J. Brugada, C. Kirchof and M. Allessie, Circulation, 1993, 88, 1852 Search PubMed.
  27. A. L. Kawczyński, W. S. Comstock and R. J. Field, Physica D, 1992, 54, 220 CrossRef CAS.
  28. R. J. Field and R. M. Noyes, J. Chem. Phys., 1974, 60, 1877 CrossRef CAS.
  29. J. D. Dockery and R. J. Field, Phys. Rev. E, 1998, 58, 823 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.