Photocatalytic decomposition of benzene over TiO2 in a humidified airstream

(Note: The full text of this document is currently only available in the PDF Version )

Hisahiro Einaga, Shigeru Futamura and Takashi Ibusuki


Abstract

Photocatalytic decomposition of benzene over TiO2 in the gas phase at room temperature was studied with a fixed-bed flow reactor. In a humidified airstream ([H2O]=2.2%), benzene was efficiently decomposed to CO2 and CO with the selectivities of 93 and 7%, respectively. The selectivities were almost independent of the benzene conversion, indicating that CO is not the intermediate of CO2 in the reaction. The selectivity of CO was in the range of 7–10% with varying concentration of O2, H2O, and benzene. The formation of phenol and brownish carbonaceous matter attributable to polymeric products was observed on the catalyst surface. In the absence of O2, benzene oxidation did not proceed at all, showing that O2 is essential for the reaction. The presence of H2O not only suppressed the formation of the carbon deposits on the catalyst surface, but also accelerated the decomposition of them to CO2 and CO. Diffuse reflectance IR study showed that the presence of H2O regenerated the surface hydroxyl groups of TiO2 which were consumed in the photoreaction. With increase in the benzene concentration, the benzene conversion was decreased and the amount of carbon deposits on the catalyst surface was increased.


References

  1. X. Fu, W. A. Zeltner and M. A. Anderson, in Semiconductor Nanoclusters—Physical, Chemical and Catalytic Aspects, ed. P. V. Kamat and D. Meisel, Elsevier, Amsterdam, 1996, p. 445 and references therein Search PubMed.
  2. O. d'Hennezel and D. F. Ollis, J. Catal., 1997, 167, 118 CrossRef CAS.
  3. J. L. Falconer and K. A. Magrini-Bair, J. Catal., 1998, 179, 171 CrossRef CAS.
  4. X. Fu, W. A. Zeltner and M. A. Anderson, Appl. Catal., 1995, 6, 209 CAS.
  5. N. N. Lichtin and M. Sadeghi, J. Photochem. Photobiol. A, 1998, 113, 81 CrossRef CAS.
  6. S. Sitkiewitz and A. Heller, New J. Chem., 1996, 20, 233 Search PubMed.
  7. W. A. Jacoby, D. M. Blake, J. A. Fennell, J. E. Boulter, L. A. Vargo, M. C. George and S. K. Dolberg, J. Air Waste Manage. Assoc., 1996, 46, 891 Search PubMed.
  8. O. d'Hennezel, P. Pichat and D. F. Ollis, J. Photochem. Photobiol. A, 1998, 118, 197 CrossRef CAS.
  9. N. N. Lichtin, M. Avudaithai, E. Berman and J. Dong, Res. Chem. Intermed., 1994, 20, 755 CAS.
  10. N. N. Lichtin, M. Avudaithai, E. Berman and A. Grayfer, Sol. Energy, 1996, 56, 377 CrossRef CAS.
  11. R. M. Alberici and W. F. Jardim, Appl. Catal., 1997, 14, 55 CAS.
  12. P. Kubelka and F. Munk, Z. Tech. Phys., 1931, 12, 593 Search PubMed.
  13. L. A. Dibble and G. B. Raupp, Catal. Lett., 1990, 4, 345 CAS.
  14. S. Kutsuna, Y. Ebihara, K. Nakamura and T. Ibusuki, Atmos. Environ., 1993, 27, 599.
  15. S. Yamazaki, S. Tanaka and H. Tsukamoto, J. Photochem. Photobiol. A, 1999, 121, 55 CrossRef CAS.
  16. H. Knotzinger, Adv. Catal., 1976, 25, 209.
  17. M. Primet, P. Pichat and M.-V. Mathieu, J. Phys. Chem., 1971, 75, 1216 CrossRef CAS.
  18. M. Primet, P. Pichat and M.-V. Mathieu, C. R. Acad. Sci. Ser. B, 1968, 267, 799 Search PubMed.
  19. R. F. Howe and M. Gratzel, J. Phys. Chem., 1985, 89, 4495 CrossRef CAS.
  20. I. Izumi, W. W. Dunn, K. O. Wilbourn, F. R. Fan and A. J. Bard, J. Phys. Chem., 1980, 84, 3207 CrossRef CAS.
  21. M. Anpo, T. Shima and Y. Kubokawa, Chem. Lett., 1985, 1799 CAS.
  22. J. R. L. Smith and R. O. C. Norman, J. Chem. Soc., 1963, 2897 RSC.
  23. W. T. Dixon and R. O. C. Norman, J. Chem. Soc., 1964, 4857 RSC.
  24. L. M. Dorfman, I. A. Taub and R. E. Buhler, J. Chem. Phys., 1962, 36, 3051 CrossRef CAS.
  25. M. Hoshino, H. Akimoto and M. Okuda, Bull. Chem. Soc. Jpn., 1978, 51, 718 CAS.
  26. A. Kunai, S. Hara, S. Ito and K. Sasaki, J. Am. Chem. Soc., 1986, 108, 6012 CrossRef CAS.
  27. N. Narita and T. Tezuka, J. Am. Chem. Soc., 1982, 104, 7316 CrossRef CAS.
  28. M. A. Fox, in Photocatalysis: Fundamentals and Applications, ed. N. Serpone and E. Pelizzetti, Wiley-Interscience, New York, 1989, p. 421 Search PubMed.
  29. D. T. Sawyer, A. Sobkowiak and J. L. Roberts, Jr., in Electrochemistry for Chemists, Wiley-Interscience, New York, 1995, p. 460 Search PubMed.
  30. A. F. Bedilo, V. I. Kim and A. M. Volodin, J. Catal., 1998, 176, 294 CrossRef CAS.
  31. T. Komatsu and A. Lund, J. Phys. Chem., 1972, 76, 1727 CrossRef CAS.
  32. Y. Kurita, T. Sonoda and M. Sato, J. Catal., 1970, 19, 82 CrossRef.
  33. J. March, in Advanced Organic Chemistry, Wiley-Interscience, New York, 1995, p. 194 Search PubMed.
  34. R. F. Howe and M. Gratzel, J. Phys. Chem., 1987, 91, 3906 CrossRef CAS.
  35. C. Naccache, P. Meriaudeau, M. Che and A. J. Tench, Trans. Faraday Soc., 1971, 67, 506 RSC.
  36. A. R. Gonzalez-Elipe, G. Munuera and J. Soria, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 748 RSC.
  37. J. Schwitzgebel, J. G. Ekerdt, H. Gerischer and A. Heller, J. Phys. Chem., 1995, 99, 5633 CrossRef CAS.
  38. J. Peral and D. F. Ollis, J. Catal., 1992, 136, 554 CrossRef.
  39. M. A. Anderson, S. Yamazaki-Nishida and S. Cervera-March, in Photocatalytic Purification and Treatment of Water and Air, ed. D. F. Ollis and H. Al-Ekabi, Elsevier, Amsterdam, 1993, p. 405 Search PubMed.
  40. Y. Luo and D. F. Ollis, J. Catal., 1996, 163, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.