Nanosecond time resolved emission spectroscopy of aminocoumarins in AOT reversed micelles

(Note: The full text of this document is currently only available in the PDF Version )

B. Bangar Raju and Silvia M. B. Costa


Abstract

Time resolved emission spectroscopy of a water insoluble aminocoumarin derivative, BC I, in n-heptane–AOT–water reversed micelles is investigated using a nanosecond fluorescence spectrometer. The extent of the time-dependent Stokes shift is found to be smaller for W0=4 than for W0=10 and also for W0=40 (W0, molar ratio of water and AOT). A monoexponential decay of the dynamic Stokes shift correlation function with a time constant of 4.5 ns is observed at W0=4. At W0=10 the time-correlation function shows a bi-exponential decay with a fast component of ∽600 ps and another of 3.3 ns comparable to the fluorescence lifetime of the dye. The time correlation function at W0=40 shows an extremely slow component of the solvation time which is at least an order of magnitude larger than the fluorescence lifetime of the probe dye. In addition a faster component with a solvation time of 2.15 ns is also observed. The solvation time observed is likely due to the diffusion of the probe dye within the micellar interface or due to the reorganization of the water molecules bound to the polar head groups of AOT. Steady-state absorption and fluorescence, and time resolved fluorescence study of another aminocoumarin, C 480, give evidence of equilibrium between the distribution of the dye molecules between the interface and water pool. The time resolved shift of the emission spectra is more likely due to the diffusion of the probe between the interface and water pool rather than reorientation of the water molecules (solvent relaxation) in the core of the reversed micelles as it has been reported earlier.


References

  1. M. Maroncelli, J. Mol. Liq., 1993, 57, 1 CrossRef CAS.
  2. S. Vajda, R. Jimenez, S. J. Rosenthal, V. Fidler, G. R. Fleming and E. W. Castner, Jr., J. Chem. Soc., Faraday Trans., 1995, 91, 867 RSC.
  3. G. Saielli, A. Polimeno, P. L. Nordio, P. Bartolini, M. Ricci and R. Righini, J. Chem. Soc., Faraday Trans., 1998, 94, 121 RSC.
  4. (a) N. Sarkar, D. Datta, S. Das and K. Bhattacharyya, J. Phys. Chem., 1996, 100, 15483 CrossRef CAS; (b) S. Matzinger, D. M. Hussey and M. D. Feyer, J. Phys. Chem. B., 1998, 102, 7216 CrossRef CAS.
  5. A. Datta, S. K. Pal, D. Mandal and K. Bhattacharyya, J. Phys. Chem. B., 1998, 102, 6114 CrossRef CAS.
  6. K. Das, N. Sarkar, S. Das, A. Datta and K. Bhattacharyya, Chem. Phys. Lett., 1996, 249, 323 CrossRef CAS.
  7. N. Sarkar, K. Das, A. Datta, S. Das and K. Bhattacharyya, J. Phys. Chem., 1996, 100, 10523 CrossRef CAS.
  8. R. E. Riter, D. M. Willard and N. E. Levinger, J. Phys. Chem., 1998, 102B, 2705 Search PubMed.
  9. J. Zhang and F. V. Bright, J. Phys. Chem., 1991, 95, 7900 CrossRef CAS.
  10. N. Wittouck, R. M. Negri, M. Ameloot and F. C. De Shryver, J. Amer. Chem. Soc., 1994, 116, 10601 CrossRef CAS.
  11. B. B. Raju and S. M. B. Costa, J. Phys. Chem. B., 1999, 103B, 4309 CrossRef CAS.
  12. S. Pal, PhD. Thesis, Bombay University, 1991.
  13. D. V. O'Connor and D. Phillips, in Time-correlated single photon counting. Academic Press, New York, 1984, ch. 6 Search PubMed.
  14. M. Maroncelli and G. R. Fleming, J. Chem. Phys., 1987, 86, 6221 CrossRef CAS.
  15. B. B. Raju, J. Phys. Chem., 1997, 101A, 981 Search PubMed.
  16. B. B. Raju and S. M. B. Costa, Phys. Chem. Chem. Phys., 1999, 1, 3539 RSC.
  17. B. B. Raju and B. Eliason, J. Photochem. Photobiol., A: Chem., 1988, 116, 135 CrossRef CAS.
  18. H. Shirota and K. Horie, J. Phys. Chem., 1999, 103B, 1437 Search PubMed.
  19. P. E. Zinsli, J. Phys. Chem., 1975, 83, 3223.
  20. The authors in ref. 8 report that the mole fraction of intrinsic water to AOT (W0), as determined by Karl-Fischer titration, for the AOT sample used to be 1. The results reported for W0= 0 in ref. 8 then should actually correspond to the results at W0= 1 and that at W0= 2.8 to the results obtained at W0= 3.8.
  21. W. Jarzeba, G. C. Walker, A. E. Johnson and P. F. Barbara, Chem. Phys., 1991, 152, 57 CrossRef CAS.
  22. G. Jones, II, C. Y. Choi, W. R. Jackson and W. R. Bergmark, J. Phys. Chem., 1974, 89, 294.
  23. H. Cho, M. Chung, J. Lee, T. Nguyn, S. Singh, M. Vedamuthu, S. Yao, S.-B. Zhu and G. W. Robinson, J. Phys. Chem., 1995, 99, 7806 CrossRef CAS.
  24. M. Belletête, M. Lachaoelle and G. Durocher, J. Phys. Chem., 1990, 94, 5337 CrossRef CAS.
  25. H. L. Pasquier, R. B. Pansu, J.-P. Chauvet, P. Pernot, A. Collet and J. Faure, Langmuir, 1997, 13, 1907 CrossRef CAS.
  26. W. Rettig and M. Zander, Ber. Bunsen-Ges. Phys. Chem., 1987, 87, 1143 Search PubMed.
  27. N. Mataga, H. Yao, T. Okada and W. Rettig, J. Phys. Chem., 1989, 93, 3383 CrossRef CAS.
  28. S. M. B. Costa, M. M. Velázquez, N. Tamai and I. Yamazaki, J. Lumin., 1991, 48 & 49, 341 CrossRef CAS and references therein.
Click here to see how this site uses Cookies. View our privacy policy here.