The structure of N-aminopyrazole in the solid state and in solution: an experimental and computational study

(Note: The full text of this document is currently only available in the PDF Version )

Jose′ Antonio Jime′nez, Rosa María Claramunt, Otilia Mó, Manuel Yáñez, Frank Wehrmann, Gerd Buntkowsky, Hans-Heinrich Limbach, Richard Goddard and Jose′ Elguero


Abstract

The title compound N-aminopyrazole (AMPZ) has been studied both theoretically and experimentally using abinitio methods, low-temperature X-ray crystallography, differential scanning calorimetry, IR spectroscopy, liquid state 1H NMR, broadband solid state 2H NMR and high resolution solid state 15N NMR spectroscopy, focussing on the structure and dynamics of the amino group and the characteristics of hydrogen bond (HB) association. The complete amino group rotation–inversion surface of AMPZ and, for comparison, also of the aniline monomer were calculated at the B3LYP/6-31G* level. The results indicate that monomeric AMPZ exhibits an s hybridized pyramidal amino group where the HH-distance vector is located perpendicular to the pyrazole ring and the hydrogen atoms bent towards the pyrazole ring nitrogen atom, i.e. with the lone electron pair anti to the latter. Both inversion at the nitrogen atom and the 180° rotation of the amino group lead to a metastable structure, where the inversion barrier is much larger than the rotational barrier. These results contrast with those obtained for aniline where the amino group is almost planar and subject to a degenerate 180° rotation. Further calculations of the hydrogen bonded cyclic AMPZ dimer indicate that hydrogen bond association does not substantially perturb the geometry of the amino group, where one of the amino group protons and the ring nitrogen atoms are involved in hydrogen bonding. The X-ray structure was determined at -173°C (100 K) on a monocrystal obtained by zone crystallization. DSC shows that on cooling, neat liquid AMPZ exhibits a solid–solid phase transition around -45°C to a low-temperature phase. In this phase AMPZ forms a weakly hydrogen bonded chain where the structure is similar to the one calculated for the monomer. Only one of the amino protons is involved in hydrogen bonding, where the NH stretch of the hydrogen bonded proton appears at 3197 cm-1 and of the non-hydrogen bonded proton at 3314 cm-1. Solid state 2H NMR spectroscopy of [ND2]AMPZ shows low-temperature structures with rigid ND vectors below and isotropically rotating vectors above the solid–solid phase transition. Hydrogen bond association was further studied by solid state 15N CPMAS (cross polarization magic angle spinning) NMR and by low-temperature liquid state 1H NMR of AMPZ specifically 15N labelled in the amino group. In contrast to the solid state, hydrogen bond exchange rendering the two amino group protons equivalent was found to be fast in the NMR timescale even at 100 K.


References

  1. J. Elguero, Pyrazoles and their Benzo Derivatives, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press; Oxford, 1984, vol. 5, p. 167 Search PubMed; J. Elguero, Pyrazoles, in Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. Scriven, Pergamon, Oxford, 1996, vol. 3, p. 1 Search PubMed.
  2. T. Kauffmann, Angew. Chem., Int. Ed. Engl., 1971, 10, 743 CAS.
  3. V. V. Kuzmenko and A. F. Pozharskii, Adv. Heterocycl. Chem., 1992, 53, 85 CAS.
  4. C. Foces-Foces, F. H. Cano, R. M. Claramunt, D. Sanz, J. Catalán, F. Fabero, A. Fruchier and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1990, 237 RSC.
  5. O. Mó, M. Yáñez, A. L. Llamas-Saiz, C. Foces-Foces and J. Elguero, Tetrahedron, 1995, 51, 7045 CrossRef.
  6. M. Chao, E. Schempp and R. D. Rosenstein, Acta Crystallogr., Sect. B, 1975, 31, 2922 CrossRef.
  7. G. Barbieri, R. Benassi, R. Grandi, U. M. Pagnoni and F. Taddei, J. Chem. Soc., Perkin Trans. 2, 1979, 330 RSC.
  8. K. Inuzuka and A. Fujimoto, Bull. Chem. Soc. Jpn., 1992, 65, 1002 CAS; K. Inuzuka, Nippon Kagaku Kaishi, 1997, 100 CAS; K. Inuzuka, Nippon Kagaku Kaishi, 1997, 393 CAS.
  9. M. W. Rathke and A. A. Millard, Org. Synth., Coll. Vol. VI, 1988, 943 Search PubMed.
  10. H. Neunhoeffer, M. Clausen, H. D. Vötter, H. Ohl, C. Krüger and K. Angermund, Liebigs Ann. Chem., 1985, 1732 Search PubMed.
  11. F. Aguilar-Parrilla, R. M. Claramunt, C. López, D. Sanz, H.-H. Limbach and J. Elguero, J. Phys. Chem., 1994, 98, 8752 CrossRef CAS.
  12. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  13. SHELXL-97, G. M. Sheldrick, University of Göttingen, 1997.
  14. G. Buntkowsky, I. Sack, H.-H. Limbach, B. Kling and J. Fuhrhop, J. Phys. Chem. B., 1997, 101, 11265 CrossRef CAS.
  15. S. N. Smirnov, N. S. Golubev, G. S. Denisov, H. Benedict, P. Schah-Mohammedi and H.-H. Limbach, J. Am. Chem. Soc., 1996, 118, 4094 CrossRef CAS and references therein.
  16. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, in Ab Initio Molecular Orbital Theory, John Wiley, New York, 1986 and references therein Search PubMed.
  17. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; C. Lee, W. Yang and R. G. Parr, Phys. Rev., 1988, B37, 785 Search PubMed.
  18. L. Gonzalez, O. Mó and M. Yáñez, J. Comput. Chem., 1997, 18, 1124 CrossRef CAS; L. Gonzalez, O. Mó, M. Yáñez and J. Elguero, J. Mol. Struct.: THEOCHEM., 1996, 371, 1 CrossRef CAS.
  19. O. Bludsky, J. Sponer, J. Leszczynski, V. Spirko and P. Hobza, J. Chem. Phys., 1996, 105, 11042 CrossRef CAS.
  20. J. C. Brand, D. R. Williams and T. J. Cook, J. Mol. Spectrosc., 1966, 20, 359 CAS.
  21. H. W. W. Ehrlich, Acta Crystallogr., 1960, 4, 946 CrossRef CAS.
  22. J. Berthou, J. Elguero and C. Rérat, Acta Crystallogr., Sect. B, 1970, 26, 1880 CrossRef CAS.
  23. F. K. Larsen, M. S. Lehmann, I. Sotøfte and S. E. Rasmussen, Acta Chem. Scand., 1970, 24, 3248 CAS.
  24. T. La Cour and S. E. Rasmussen, Acta Chem. Scand., 1973, 27, 1845 CrossRef CAS.
  25. K. Yamaguchi, A. Ohsawa, T. Kaihoh, M. Okada, C. Kawabata and H. Igeta, Acta Crystallogr., Sect. C, 1989, 45, 1902 CrossRef.
  26. M. Fukuyo, K. Hirotsu and T. Higuchi, Acta Crystallogr., Sect. B, 1982, 38, 640 CrossRef.
  27. L. K. Dyall, Spectrochim. Acta, Part A, 1988, 44, 283 CrossRef.
  28. L. K. Dyall, G. L'abbé and W. Dehaen, Spectrochim. Acta, Part A, 1997, 53, 377 CrossRef.
  29. R. E. Wasylishen and T. Schaefer, Can. J. Chem., 1973, 51, 3087 CAS.
  30. G. R. Desiraju, in Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989, p. 125 Search PubMed; J. Bernstein, M. C. Etter and L. Leiserowitz, in Structure Correlation, ed. H.-B. Bürgi and J. D. Dunitz, VCH, Weinheim, 1994, vol. 2, p. 431 Search PubMed.
  31. S. H. Alarcón, J. A. Jiménez, R. M. Claramunt, H.-H. Limbach and J. Elguero, Magn. Reson. Chem., submitted Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.