The role of char-forming processes in the thermal decomposition of cellulose

(Note: The full text of this document is currently only available in the PDF Version )

R. Ball, A. C. McIntosh and J. Brindley


Abstract

A simple model for the thermal decomposition of amorphous cellulose is proposed that rationalizes the effect of water in promoting the charring process at the expense of volatilization. Simulations of mass-loss histories and product evolution are shown to be consistent with various experimental observations in the literature. Under char-promoting conditions where heat transfer is limited, anomalous thermal effects are predicted which indicate that char formation may not always be desirable in fire-inhibiting treatments of or strategies for cellulosic materials.


References

  1. D. F. Arseneau, Can. J. Chem., 1971, 49, 632 CAS.
  2. W. S.-L. Mok and M. J. Antal, Thermochim. Acta, 1983, 68, 165 CrossRef CAS.
  3. A. Tabatabaie-Raissi, W. S.-L. Mok and M. J. Antal, Ind. Eng. Chem. Res., 1989, 28, 856 CrossRef CAS.
  4. W. S.-L. Mok, M. J. Antal, P. Szabó, G. Várhegyi and B. Zelei, Ind. Eng. Chem. Res., 1992, 31, 1162 CrossRef CAS.
  5. G. Várhegyi, P. Szabó, W. S.-L. Mok and M. J. Antal, J. Anal. Appl. Pyrolysis, 1993, 26, 159 CrossRef CAS.
  6. Y. I. Rubtsov, A. I. Kazakov, L. P. Andrienko and G. B. Manelis, Combust. Explos. Shock Waves (Engl. Transl.), 1993, 29, 710 Search PubMed.
  7. J. P. Diebold, Biomass Bioenergy, 1994, 7, 75 CAS.
  8. M. J. Antal and G. Várhegyi, Ind. Eng. Chem. Res., 1995, 34, 703 CrossRef CAS.
  9. M. L. Boronson, J. B. Howard, J. P. Longwell and W. A. Peters, Energy Fuels, 1989, 3, 735 CrossRef.
  10. P. Szabó, G. Várhegyi, F. Till and O. Faix, J. Anal. Appl. Pyrolysis, 1996, 36, 179 CrossRef CAS.
  11. E. Jakab, K. Liu and H. L. C. Meuzelaar, Ind. Eng. Chem. Res., 1997, 36, 2087 CrossRef CAS.
  12. M. G. Essig, G. N. Richards and E. M. Schenck, ‘Mechanisms of formation of the major volatile products from the pyrolysis of cellulose’, in Cellulose and Wood Chemistry and Technology, ed. C. Schuerch, John Wiley & Sons, New York, 1989 Search PubMed.
  13. I. L. Finar, Organic Chemistry, Longman, London 1968, vol. 2 Search PubMed.
  14. P. Beguin and J. P. Aubert, FEMS Microbiol. Rev., 1994, 13, 25 CrossRef CAS.
  15. B. Phillip, Pure Appl. Chem., 1984, 56, 391.
  16. A. Broido and M. Weinstein, Combust. Sci. Technol., 1970, 1, 279.
  17. M. Weinstein and A. Broido, Combust. Sci. Technol., 1970, 1, 287 CAS.
  18. R. K. Agrawal, Can. J. Chem. Eng., 1988, 66, 403 Search PubMed.
  19. R. K. Agrawal, Can. J. Chem. Eng., 1970, 66, 413 Search PubMed.
  20. F. Shafizadeh and Y. Z. Lai, J. Org. Chem., 1972, 37, 278 CrossRef CAS.
  21. D. Price, A. R. Horrocks and M. Akalin, Br. Polym. J., 1988, 20, 61 Search PubMed.
  22. D. Price, A. R. Horrocks, M. Akalin and A. A. Faroq, J. Anal. Appl. Pyrolysis, 1997, 40–41, 511 CrossRef.
  23. R. Ball, A. McIntosh and J. Brindley, Combust. T heory Model., 1999, 3(3), 447 Search PubMed.
  24. A. G. W. Bradbury, Y. Sakai and F. Shafizadeh, J. Appl. Polym. Sci., 1979, 23, 3271 CAS.
  25. H. C. Kung and A. S. Kalekar, Combust. Flame, 1973, 20, 91 CAS.
  26. M. R. Nyden, G. P. Forney and J. E. Brown, Macromolecules, 1992, 25, 1658 CrossRef CAS.
  27. Y. Chen, A. Frendi, S. S. Tewari and M. Sibulkin, Combust. Flame, 1991, 84, 121 CAS.
  28. C. Diblasi, Prog. Energy Combust. Sci., 1993, 19, 71 CAS.
  29. I. Milosavljevic, V. Oja and E. M. Suuberg, Ind. Eng. Chem. Res., 1996, 35, 653 CrossRef CAS.