The role of char-forming processes in the thermal decomposition of cellulose

(Note: The full text of this document is currently only available in the PDF Version )

R. Ball, A. C. McIntosh and J. Brindley


Abstract

A simple model for the thermal decomposition of amorphous cellulose is proposed that rationalizes the effect of water in promoting the charring process at the expense of volatilization. Simulations of mass-loss histories and product evolution are shown to be consistent with various experimental observations in the literature. Under char-promoting conditions where heat transfer is limited, anomalous thermal effects are predicted which indicate that char formation may not always be desirable in fire-inhibiting treatments of or strategies for cellulosic materials.


References

  1. D. F. Arseneau, Can. J. Chem., 1971, 49, 632 CAS .
  2. W. S.-L. Mok and M. J. Antal, Thermochim. Acta, 1983, 68, 165 CrossRef CAS .
  3. A. Tabatabaie-Raissi, W. S.-L. Mok and M. J. Antal, Ind. Eng. Chem. Res., 1989, 28, 856 CrossRef CAS .
  4. W. S.-L. Mok, M. J. Antal, P. Szabó, G. Várhegyi and B. Zelei, Ind. Eng. Chem. Res., 1992, 31, 1162 CrossRef CAS .
  5. G. Várhegyi, P. Szabó, W. S.-L. Mok and M. J. Antal, J. Anal. Appl. Pyrolysis, 1993, 26, 159 CrossRef CAS .
  6. Y. I. Rubtsov, A. I. Kazakov, L. P. Andrienko and G. B. Manelis, Combust. Explos. Shock Waves (Engl. Transl.), 1993, 29, 710 Search PubMed .
  7. J. P. Diebold, Biomass Bioenergy, 1994, 7, 75 CAS .
  8. M. J. Antal and G. Várhegyi, Ind. Eng. Chem. Res., 1995, 34, 703 CrossRef CAS .
  9. M. L. Boronson, J. B. Howard, J. P. Longwell and W. A. Peters, Energy Fuels, 1989, 3, 735 CrossRef .
  10. P. Szabó, G. Várhegyi, F. Till and O. Faix, J. Anal. Appl. Pyrolysis, 1996, 36, 179 CrossRef CAS .
  11. E. Jakab, K. Liu and H. L. C. Meuzelaar, Ind. Eng. Chem. Res., 1997, 36, 2087 CrossRef CAS .
  12. M. G. Essig, G. N. Richards and E. M. Schenck, ‘Mechanisms of formation of the major volatile products from the pyrolysis of cellulose’, in Cellulose and Wood Chemistry and Technology, ed. C. Schuerch, John Wiley & Sons, New York, 1989 Search PubMed .
  13. I. L. Finar, Organic Chemistry, Longman, London 1968, vol. 2 Search PubMed .
  14. P. Beguin and J. P. Aubert, FEMS Microbiol. Rev., 1994, 13, 25 CrossRef CAS .
  15. B. Phillip, Pure Appl. Chem., 1984, 56, 391 .
  16. A. Broido and M. Weinstein, Combust. Sci. Technol., 1970, 1, 279 .
  17. M. Weinstein and A. Broido, Combust. Sci. Technol., 1970, 1, 287 CAS .
  18. R. K. Agrawal, Can. J. Chem. Eng., 1988, 66, 403 Search PubMed .
  19. R. K. Agrawal, Can. J. Chem. Eng., 1970, 66, 413 Search PubMed .
  20. F. Shafizadeh and Y. Z. Lai, J. Org. Chem., 1972, 37, 278 CrossRef CAS .
  21. D. Price, A. R. Horrocks and M. Akalin, Br. Polym. J., 1988, 20, 61 Search PubMed .
  22. D. Price, A. R. Horrocks, M. Akalin and A. A. Faroq, J. Anal. Appl. Pyrolysis, 1997, 40–41, 511 CrossRef .
  23. R. Ball, A. McIntosh and J. Brindley, Combust. T heory Model., 1999, 3(3), 447 Search PubMed .
  24. A. G. W. Bradbury, Y. Sakai and F. Shafizadeh, J. Appl. Polym. Sci., 1979, 23, 3271 CAS .
  25. H. C. Kung and A. S. Kalekar, Combust. Flame, 1973, 20, 91 CAS .
  26. M. R. Nyden, G. P. Forney and J. E. Brown, Macromolecules, 1992, 25, 1658 CrossRef CAS .
  27. Y. Chen, A. Frendi, S. S. Tewari and M. Sibulkin, Combust. Flame, 1991, 84, 121 CAS .
  28. C. Diblasi, Prog. Energy Combust. Sci., 1993, 19, 71 CAS .
  29. I. Milosavljevic, V. Oja and E. M. Suuberg, Ind. Eng. Chem. Res., 1996, 35, 653 CrossRef CAS .