Zeolite proton-assisted reoxidation of Cu0 in over-exchanged CuII-ZSM-5 reduced by hydrogen. (1) Reoxidation in Ar stream: an FTIR study

(Note: The full text of this document is currently only available in the PDF Version )

János Sárkány


Abstract

Reoxidation of Cu0 (3.1 wt%) in ZSM-5 (nSi/nAl=20) produced by over-exchange (nCu/nAl=0.75) and a subsequent reduction with H2 (773 K, 30 min) was studied in an Ar stream using FTIR spectroscopy. Above 573 K, the decrease in the intensity of the OH stretching band at 3611 cm-1 raised the consideration that some Cu0 atoms were reoxidized to copper ions by zeolitic protons. The changes in the skeletal vibrations, namely in the internal (T–O–T) asymmetric stretching vibration (νasint) in the range 1050–900 cm-1, indicated that (i) mainly Cu+ ions formed (975 cm-1); however, the reoxidation did not stop at this stage: a small amount of CuII species (937–925 cm-1) was also produced. (ii) More or less, electronic interactions might occur between the different copper species inside the zeolite channels. The Arrhenius plots between 573 and 773 K based on the temperature-dependent decreases in the absorbance and integrated intensity of the 3611 cm-1 band resulted in apparent activation energies (Eapps) of 42–46 kJ mol-1 (≈10–11 kcal mol-1) attributed the reoxidation of Cu0 caused in Ar by zeolitic H+. Basic processes and reasonable mechanisms related to the above reoxidation of Cu0 to Cu+ are also discussed.


References

  1. (a) M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya and S. Kagawa, J. Chem. Soc., Chem. Commun., 1986, 1272 RSC; (b) M. Iwamoto, H. Yahiro, Y. Mine and S. Kagawa, Chem. Lett., 1989, 213 CAS; (c) M. Iwamoto, Stud. Surf. Sci. Catal., 1990, 54, 121; (d) M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem., 1991, 95, 3727 CrossRef CAS.
  2. M. Shelef, Chem. Rev., 1995, 95, 209 CrossRef CAS and relevant references cited therein.
  3. Y. Traa, B. Burger and J. Weitkamp, Microporous Mesoporous Mater., 1999, 30, 3 CrossRef CAS.
  4. P. A. Jacobs, J. B. Uytterhoeven and H. K. Beyer, J. Chem. Soc., Faraday Trans. I, 1977, 73, 1755 RSC.
  5. D. Ballivet-Tkatchenko and G. Coudurier, Inorg. Chem., 1979, 18, 558 CrossRef CAS.
  6. M. Suzuki, K. Tsutsumi and H. Takahashi, Zeolites, 1982, 2, 87 CAS.
  7. H. J. Jiang, M. S. Tzou and W. M. H. Sachtler, Catal. Lett., 1988, 1, 99 CAS.
  8. M. S. Tzou, B. K. Teo and W. M. H. Sachtler, J. Catal., 1988, 113, 220 CrossRef CAS.
  9. J. Valyon, J. Engelhardt, F. Lónyi and Zs. Sándor, Stud. Surf. Sci. Catal., 1999, 125, 375 CAS.
  10. T. T. Wong, Z. Zhang and W. M. H. Sachtler, Catal. Lett., 1990, 4, 365 CAS.
  11. T. T. Wong, A. Yu. Stakheev and W. M. H. Sachtler, J. Phys. Chem., 1992, 96, 7733 CrossRef CAS.
  12. P. B. Peapples-Montgomery and K. Seff, J. Phys. Chem., 1992, 96, 5962 CrossRef CAS.
  13. A. Seidel and B. Boddenberg, Chem. Phys. Lett., 1996, 249, 117 CrossRef CAS.
  14. M. Keindl, H. K. Beyer and G. Pál-Borbély, Recent Research Reports, in Book of Abstracts, 1st International FEZA Conference on Porous Materials in Environmentally Friendly Processes, Eger, Hungary, September 1–4, 1999, Hungarian Zeolite Association, Szeged, p. R17 Search PubMed.
  15. T. Sprang, A. Seidel, M. Wark, F. Rittner and B. Boddenberg, J. Mater. Chem., 1996, 7, 1429 RSC.
  16. J. Sárkány, J. L. d'Itri and W. M. H. Sachtler, Catal. Lett., 1992, 16, 241 CrossRef CAS.
  17. J. Sárkány and W. M. H. Sachtler, Zeolites, 1994, 14, 7 CrossRef CAS.
  18. G.-D. Lei, B. L. Adelman, J. Sárkány and W. M. H. Sachtler, Appl. Catal. B, 1995, 5, 245 CrossRef CAS.
  19. J. Sárkány and W. M. H. Sachtler, Stud. Surf. Sci. Catal., 1995, 94, 649 CAS.
  20. T. Beutel, J. Sárkány, G.-D. Lei, J. Y. Yan and W. M. H. Sachtler, J. Phys. Chem., 1996, 100, 845 CrossRef CAS.
  21. (a) J. Sárkány, J. Mol. Struct., 1997, 410–411, 95 CrossRef CAS; (b) J. Sárkány, J. Mol. Struct., 1997, 410–411, 137 CrossRef CAS; (c) J. Sárkány, J. Mol. Struct., 1997, 410–411, 145 CrossRef CAS.
  22. Y. Y. Huang(a)J. Catal., 1973, 30, 187; (b)J. Am. Chem. Soc., 1973, 95, 6636 Search PubMed.
  23. S. C. Larsen, A. Aylor, A. T. Bell and J. A. Reimer, J. Phys. Chem., 1994, 98, 11533 CrossRef CAS.
  24. P. A. Jacobs and R. von Ballmoos, J. Phys. Chem., 1982, 86, 3050 CrossRef CAS.
  25. J. Datka and E. Tuznik, Zeolites, 1985, 5, 230 CAS.
  26. G. L. Woolery, L. B. Alemany, R. M. Dessau and A. W. Chester, Zeolites, 1986, 6, 14 CrossRef CAS.
  27. V. L. Zholobenko, L. M. Kustov, V. Yu. Borovkov and V. B. Kazansky, Zeolites, 1988, 8, 175 CAS.
  28. T. Romotowski, J. Komorek, Ye. A. Paukshtis and E. N. Yurchenko, Zeolites, 1991, 11, 497 CAS.
  29. W. E. Farneth and R. J. Gorte, Chem. Rev., 1995, 95, 615 CrossRef CAS.
  30. (a) L. M. Parker, D. M. Bibby and G. R. Burns, Zeolites, 1991, 11, 293 CAS; (b) A. Jentys, G. Warecka, M. Derewinski and J. A. Lercher, J. Phys. Chem., 1989, 93, 4837 CrossRef CAS; (c) G. O. Brunner, Zeolites, 1987, 7, 9 CrossRef CAS; (d) U. Lohse, E. Loeffer, M. Hunger, J. Stoeckner and V. Patzelová, Zeolites, 1987, 7, 11 CrossRef CAS; (e) A. Ison and R. J. Gorte, J. Catal., 1984, 89, 150 CrossRef CAS.
  31. J. Valyon and W. K. Hall, J. Phys. Chem., 1993, 97, 7054 CrossRef CAS.
  32. (a) R. A. Schoonheydt, Catal. Rev.-Sci. Eng., 1993, 35, 129 Search PubMed; (b) M. Calligaris, G. Nardin and L. Randaccio, Zeolites, 1984, 4, 251 CAS; (c) M. Calligaris, A. Mezzetti, G. Nardin and L. Randaccio, Zeolites, 1985, 5, 317 CAS; (d) M. Calligaris, A. Mezzetti, G. Nardin and L. Randaccio, Zeolites, 1986, 6, 137 CAS; (e) R. A. van Santen and D. L. Vogel, Adv. Solid-State Chem., 1989, 1, 151 Search PubMed; (f) K. Klier, Langmuir, 1988, 4, 13 CrossRef CAS.
  33. D. C. Koningsberger and J. T. Miller, Stud. Surf. Sci. Catal., 1995, 97, 125 CAS.
  34. J. Sárkány, to be published.
  35. (a) J. Sárkány, Dissertation for Candidate Degree of Sciences, Szeged, Hungary, 1989; (b) J. Sárkány and M. Bartók, Acta Chim. Hung., 1986, 122, 285 CAS.
  36. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 4173 CrossRef CAS.
  37. R. A. van Santen and G. J. Kramer, Chem. Rev., 1995, 95, 637 CrossRef CAS.
  38. (a) G. J. Gajda and J. A. Rabo, in Acidity and Basicity of Solids; Theory, Assessment and Utility, ed. J. Fraissard and L. Petrakis, NATO ASI Series, Kluwer Academic, Dordrecht, Netherlands, 1994, p. 127 Search PubMed; (b) Gy. Rabó and G. J. Gajda, Magy. Kém. Foly., 1994, 100, 277 Search PubMed.
  39. J. Sauer, Chem. Rev., 1989, 89, 1990.
  40. N. O. Gonzalez, A. T. Bell and A. K. Chakraborty, J. Phys. Chem. B, 1997, 101, 10058 CrossRef CAS.
  41. (a) H. V. Brand, L. A. Curtiss and L. E. Iton, J. Phys. Chem., 1993, 97, 12773 CrossRef CAS; (b) H. V. Brand, L. A. Curtiss and L. E. Iton, J. Phys. Chem., 1992, 96, 7725 CrossRef CAS; (c) A. E. Alvarado-Swaisgood, M. K. Barr, P. J. Hay and A. Redondo, J. Phys. Chem., 1991, 95, 10031 CrossRef CAS; (d) J. B. Nicholas, Stud. Surf. Sci. Catal., 1996, 101, 1263 CAS; (e) J. B. Nicholas, R. E. Winans, R. J. Harrison, L. E. Iton, L. A. Curtiss and A. J. Hopfinger, J. Phys. Chem., 1992, 96, 10247 CrossRef CAS; (f) G. J. Kramer and R. A. van Santen, J. Am. Chem. Soc., 1993, 115, 2887 CrossRef CAS; (g) A. Kyrlidis, S. J. Cook, A. K. Chakraborty, A. T. Bell and D. N. Theodorou, J. Phys. Chem., 1995, 99, 1505 CrossRef CAS.
  42. G. J. Kramer, A. J. M. de Man and R. A. van Santen, J. Am. Chem. Soc., 1991, 113, 6435 CrossRef CAS.
  43. J. Datka, M. Boczar and P. Rymarowicz, J. Catal., 1998, 114, 368 CrossRef CAS.
  44. V. B. Kazansky, Acc. Chem. Res., 1991, 24, 379 CrossRef.
  45. P. Sarv, T. Tuherm, E. Lippmaa, K. Keskinen and A. Root, J. Phys. Chem., 1995, 99, 13763 CrossRef CAS.
  46. J.-P. Shen, T. Sun, X.-W. Yang, D.-Z. Jiang and E.-Z. Min, J. Phys. Chem., 1995, 99, 12332 CrossRef CAS.
  47. T. Baba, N. Komatsu, Y. Ono and H. Sugishawa, J. Phys. Chem. B, 1998, 102, 804 CrossRef CAS.
  48. T. Baba, Y. Inoue, H. Shohji, T. Uematsu and Y. Ono, Microporous Mater., 1995, 3, 647 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.