The reactions of OH radicals with di-i-propoxymethane and di-sec-butoxymethane: Kinetic measurements and structure activity relationships

(Note: The full text of this document is currently only available in the PDF Version )

Karl H. Becker, Carlos M. Freitas Dinis, Harald Geiger and Peter Wiesen


Abstract

The gas-phase reactions of OH(X2Π) radicals with di-i-propoxymethane (DiPM) and di-sec-butoxymethane (DsBM) have been studied in argon in the temperature range 295–700 K at total pressures between 50 and 400 Torr. OH radicals were generated by excimer laser photolysis of H2O2 and were detected by laser-induced fluorescence. Within the investigated ranges, the reactions of OH(X2Π) radicals with DiPM and DsBM were found to be independent of total pressure. Weak dependencies of the rate coefficients on temperature were observed. Bimolecular rate coefficients for the reactions of OH(X2Π) with DiPM and DsBM at 298 K of kOH+DiPM=(3.47±0.20)×10-11 cm3 s-1 and kOH+DsBM=(4.25±0.13)×10-11 cm3 s-1, respectively, have been determined. In order to describe the kinetics of the reactions of OH radicals with DiPM and DsBM as well as analogous acetals, a structure activity relationship (SAR) technique established for other reactant classes has been modified and applied. Compared to the former SAR method, which does not yield satisfying results for oxygenated VOCs (volatile organic compounds), the present calculations lead to much better agreement with the experimental data for dialkylacetals of the type R–O–CH2–O–R.


References

  1. H. Guttmann and K. P. Schug, SAE Technical Paper Series, No. 900274, Society of Automotive Engineers, Warrendale, PA, USA, 1990 Search PubMed.
  2. CONCAWE Automotive Emissions Management Group, Report No. 2/95, Brussels, Belgium, 1995.
  3. L. Dodge and D. W. Naegeli, Final Report No. NREL/-TP-425-6345, National Renewable Energy Laboratory, Golden, CO, USA, 1994.
  4. T. J. Wallington, M. D. Hurley, J. C. Ball, A. M. Straccia, J. Platz, L. K. Christensen, J. Sehested and O. J. Nielsen, J. Phys. Chem. A, 1997, 101, 5302 CrossRef CAS.
  5. R. M. Reuter, J. D. Benson, V. R. Burnes, R. A. Gorse, A. M. Hochhauser, W. J. Koehl, L. J. Painter, B. H. Rippon and J. A. Rutherford, SAE Technical Paper Series, No. 920326, Society of Automotive Engineers, Warrendale, PA, USA, 1992 Search PubMed.
  6. P. J. Squillace, J. S. Zogorski, W. G. Wilber and C. V. Price, Environ. Sci. Technol., 1996, 30, 1721 CrossRef CAS.
  7. L. P. Thüner, I. Barnes, T. Maurer, C. G. Sauer and K. H. Becker, Int. J. Chem. Kinet., in the press Search PubMed.
  8. R. Atkinson, Int. J. Chem. Kinet., 1986, 18, 555 CrossRef CAS.
  9. R. Atkinson, Int. J. Chem. Kinet., 1987, 19, 799 CrossRef CAS.
  10. E. S. C. Kwok and R. Atkinson, Atmos. Environ., 1995, 29, 1685 CrossRef.
  11. K. H. Becker, H. Geiger and P. Wiesen, Chem. Phys. Lett., 1991, 184, 256 CrossRef CAS.
  12. K. H. Becker, R. Kurtenbach, F. Schmidt and P. Wiesen, Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 128 CAS.
  13. R. Kurtenbach, PhD Thesis, University of Wuppertal, Wuppertal, Germany, 1994, p. 13.
  14. P. Dagaut, R. Liu, T. J. Wallington and M. J. Kurylo, Int. J. Chem. Kinet., 1989, 21, 1173 CrossRef CAS.
  15. E. Porter, J. Wenger, J. Treacy, H. Sidebottom, A. Mellouki, S. Téton and G. Le Bras, J. Phys. Chem. A, 1997, 101, 5570 CrossRef CAS.
  16. K. H. Becker, C. Dinis, H. Geiger and P. Wiesen, Chem. Phys. Lett., 1999, 300, 460 CrossRef CAS.
  17. T. Maurer, C. G. Sauer and L. P. Thüner, private communication.
  18. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, Wiley, New York, 1998 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.