Osmotic properties of a cation exchange membrane in contact with an aqueous solution of a non-electrolyte: influence of preferential solvation of counterions

(Note: The full text of this document is currently only available in the PDF Version )

Petra Klausener, Ngoc-Ty Dang and Dietrich Woermann


Abstract

A system in which a membrane separates two aqueous solutions of a non-electrolyte of different but constant compositions is used to demonstrate a continuous transition from positive to negative osmosis and from positive to negative retention coefficients in filtration experiments. The membrane is a cation exchange membrane loaded with two deliberately chosen counterion species which compensate the electrical fixed charges of the membrane matrix. The parameter of the experiments is the mole fraction of one of the mobile counterion species in the pore fluid of the membrane. The counterion species which is preferential solvated by the non-electrolyte acts as a carrier for that component across the membrane. Increasing the mole fraction of the carrier ion species in the pore fluid causes two effects: it increases the transport rate of the non-electrolyte across the membrane as well as its coupling with the osmotic volume flow across the membrane. This leads to the stated changes of the transport properties of the membrane.


References

  1. R. Schlögl, Stofftransport durch Membranen, Dietrich Steinkopff Verlag, Darmstadt, 1964, ch. II Search PubMed.
  2. F. A. H. Schreinemakers, Lectures on Osmosis, G. Naeff, The Hague, 1938 Search PubMed.
  3. H. Strehlow and H. M. Koepp, Z. Elektrochem., 1958, 62, 373 Search PubMed.
  4. H. Schneider and H. Strehlow, Z. Elektrochem., 1962, 66, 309 Search PubMed.
  5. H. Schneider and H. Strehlow, Ber. Bunsen-Ges. Phys. Chem., 1965, 69, 674 Search PubMed.
  6. H. Schneider and H. Strehlow, Z. Phys. Chem. (Munich), 1966, 49, 44 CAS.
  7. B. G. Cox, R. Natarajan and W. E. Waghorne, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 861 RSC.
  8. E. Philippsen and D. Woermann, Ber. Bunsen-Ges. Phys. Chem., 1984, 88, 1182 Search PubMed.
  9. D. Pfenning and D. Woermann, J. Membr. Sci., 1987, 32, 105 CrossRef CAS.
  10. D. Pfenning and D. Woermann, J. Membr. Sci., 1990, 48, 291 CrossRef CAS.
  11. D. Woermann, in Surface Chemistry and Electrochemistry of Membranes, ed. T. S. Soerensen, Marcel Dekker, Inc., New York-Basel, 1999, p. 271 Search PubMed.
  12. G. Manecke, Z. Phys. Chem., 1952, 201, 193 CAS.
  13. P. Meares and J. S. Mackie, Proc. R. Soc. London, Ser. A, 1955, 232, 485.
  14. E. Philippsen and D. Woermann, J. Membr. Sci., 1984, 17, 139 CrossRef CAS.
  15. F. Helfferich, Ionenaustauscher, Verlag Chemie, Weinheim–Bergstr., 1959 Search PubMed.
  16. M. Moolel and H. Schneider, Z. Phys. Chem. (Munich), 1971, 74, 237 CAS.
  17. G. Benter and H. Schneider, Z. Phys. Chem. (Munich), 1973, 77, 997 CAS.
  18. C. Wagner, Z. Phys. Chem., 1928, 132, 273 CAS.
  19. I. Prigogine and R. Defay, Chemische Thermodynamik, VEB Deutscher Verlag fuür Grundstoffindustrie, Leipzig, 1962, p. 276 Search PubMed.
  20. J. Schink, H. Yeh, L. Belkoura, D. Woermann, Y. J. Li and B. Chu, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1103 CAS.
  21. W. Pusch, Ber. Bunsen-Ges. Phys. Chem., 1977, 81, 269 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.