NMR studies on hydrophobic interactions in solution Part 4. Temperature and concentration dependence of the hydrophobic self-association of tert-butanol in water

(Note: The full text of this document is currently only available in the PDF Version )

Manghaiko Mayele, Manfred Holz and Antonio Sacco


Abstract

The hydrophobic self-association of tert-butanol was investigated in binary aqueous mixtures at 10, 25 and 40°C by the application of NMR techniques. The association tendency of the organic compound was monitored using the so-called (self)-association parameter A22 obtained by means of the measurement of intermolecular 1H–1H dipole–dipole relaxation rates of the methyl protons and of self-diffusion coefficients of tert-butanol molecules. The composition dependence of A22 shows that the self-association of tert-butanol increases with dilution and reaches a maximum at a concentration of about 2–3 mol% at 25°C. At lower concentrations a decrease is observed. The concentration corresponding to the maximum of A22 can be viewed as a transition point separating the tert-butanol concentration range (within the water-rich domain) in two regions, the low concentration region being dominated by single hydrophobically hydrated tert-butanol molecules whereas the high concentration region is characterised by microstructures where tert-butanol molecules are hydrophobically associated. With increasing temperature the association tendency is enhanced and the A22 maximum is shifted to lower tert-butanol concentrations, diminishing the extent of the hydrophobic hydration region. The occurrence of two structurally different regions is discussed in the light of literature results from other methods.


References

  1. A. Sacco, A. Asciolla, E. Matteoli and M. Holz, J. Chem. Soc., Faraday Trans., 1996, 92, 35 RSC.
  2. A. Sacco and M. Holz, J. Chem. Soc., Faraday Trans., 1997, 93, 1101 RSC.
  3. A. Sacco, F. M. De Cillis and M. Holz, J. Chem. Soc., Faraday Trans., 1998, 94, 2089 RSC.
  4. D. F. Evans and B. W. Ninham, J. Phys. Chem., 1986, 90, 226 CrossRef CAS.
  5. P. L. Privalov and S. J. Gill, Adv. Protein Chem., 1988, 39, 191 CAS.
  6. K. A. Dill, Biochemistry, 1990, 29, 7133 CrossRef CAS.
  7. H. G. Hertz, A. Kratochwill and H. Weingärtner, Proc. Indian Acad. Sci. (Chem. Sci.), 1985, 94, 337 Search PubMed.
  8. K. J. Müller and H. G. Hertz, J. Phys. Chem., 1996, 100, 1256 CrossRef.
  9. M. D. Zeidler, Ber. Bunsen-Ges. Phys. Chem., 1965, 69, 659 Search PubMed.
  10. E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 1965, 42, 288 CrossRef CAS.
  11. Y. Koga, J. Phys. Chem., 1996, 100, 5172 CrossRef CAS.
  12. K. Mizuno, T. Ochi, S. Shimada, Y. Nishimura, S. Maeda and Y. Koga, Phys. Chem. Chem. Phys., 1999, 1, 133 RSC.
  13. M. d'Angelo, G. Onoro and A. Santuci, J. Chem. Phys., 1994, 100, 3107 CrossRef CAS.
  14. E. Matteoli and L. Lepori, J. Chem. Phys., 1984, 80, 2856 CrossRef CAS.
  15. A. Ben-Naim, J. Chem. Phys., 1977, 67, 4884 CrossRef CAS.
  16. K. R. Harris and P. J. Newitt, J. Phys. Chem. B, 1998, 102(44), 8874 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.