The bundle theory for polymer crystallisation

(Note: The full text of this document is currently only available in the PDF Version )

Giuseppe Allegra and Stefano Valdo Meille


Abstract

The bundle theory of polymer crystallisation expounded by Allegra (J. Chem. Phys., 1977, 66, 5453; Ferroelectrics, 1980, 30, 195) is revisited as new experimental and simulation results are considered. We propose a framework by which recent evidence of structure formation prior to crystallisation may be understood at the molecular level. We suggest that polymer crystallisation is controlled by the metastable equilibrium whereby van der Waals intramolecular associations (bundles) form among parallel stems with a length of a few chain atoms. Bundle aggregation may develop into pre-crystalline structures. The similarity between initial fold lengths observed from solution and from bulk crystallisation appears to support the assumption that their value is controlled by intramolecular bundle statistics with an equilibrium character. Secondary, i.e. surface, nucleation is preceded by chain adsorption on the growing crystal. Chain segregation is determined by the unfavourable adsorption equilibrium of shorter chains. Three models of bundle formation are considered, differing in the length distribution of the crystalline stems and in the topology of bundle association. For moderate undercoolings (ΔT50°C for polyethylene), considering bundle aggregates with more complex topologies rather than simple bundles hardly affects the predicted fold length. Conversely, allowing for stems with different lengths within the same bundles improves the agreement with experimental data. The mechanism by which bundle equilibrium may influence current interpretations of the crystal growth rates in different regimes remains to be assessed.


References

  1. J. I. Lauritzen, Jr. and J. D. Hoffman, J. Res. Nat. Bur. Stds., 1960, 64A, 73 Search PubMed.
  2. J. D. Hoffman, L. J. Frolen, S. R. Gaylon and J. I. Lauritzen, Jr, J. Res. Nat. Bur. Stds., 1975, 79A, 671 Search PubMed.
  3. J. D. Hoffman, Polymer, 1983, 24, 3 CrossRef CAS.
  4. J. J. Point, Macromolecules, 1979, 12, 770 CrossRef CAS; Discuss. Faraday Soc., 1979, 68, 167 Search PubMed.
  5. B. Wunderlich and A. Mehta, J. Polym. Sci., Polym. Phys. Edn., 1974, 12, 255 Search PubMed.
  6. M. Hikosaka, Polymer, 1987, 28, 1257 CAS; ibid., 1990, 31, 458 Search PubMed.
  7. D. M. Sadler, Polymer, 1983, 24, 1401 CAS.
  8. Throughout this paper the term configuration will be adopted instead of conformation to stress the statistical meaning of a point in configuration space instead of the actual shape of the molecule.
  9. G. Allegra, J. Chem. Phys., 1977, 66, 5453 CrossRef CAS.
  10. G. Allegra, Ferroelectrics, 1980, 30, 195 CAS.
  11. J. Rault, in Crystallization of Polymers, ed. M. Dosière, Kluwer Academic, Boston, 1993, pp. 313–322 Search PubMed.
  12. In performing the calculations for polyethylene, we took the numerical value of the van der Waals energy η directly from the data pertaining to the stable orthorhombic form. It should be stressed that the relevant parameter is the product α(3ηkBTo ln λ), i.e., the free energy difference per crystallised stem. We believe it reasonable that in reality η should be smaller than the value taken by us, and the number of bonds per stem, α, correspondingly larger (see also the discussion in Section 4).
  13. In the first paper on this subject9 one of us (GA) incorrectly proposed an expression for the statistical weight of the crystal-like configurations where the contribution at the melting temperature To was not removed [see e.g. eqns. (4) and (5)].
  14. B. Wunderlich, Macromolecular Physics, Academic Press, New York, 1976, vol. II Search PubMed.
  15. P. H. Geil, Polymer Single Crystals, Wiley Interscience, Chichester, 1963 Search PubMed.
  16. D. C. Bassett, Principles of Polymer Morphology, Cambridge University Press, Cambridge, 1981 Search PubMed.
  17. K. Armitstead and G. Goldbeck-Wood, Adv. Polym. Sci., 1992, 100, 219.
  18. S. J. Spells and D. M. Sadler, Polymer, 1984, 25, 739 CAS; S. J. Spells, A. Keller and D. M. Sadler, Polymer, 1984, 25, 749 CAS.
  19. M. Stamm, E. W. Fischer, M. Dettenmaier and P. Convert, Faraday Discuss. Chem. Soc., 1979, 68, 263 RSC.
  20. P. J. Barham, R. A. Chivers, A. Keller, J. Martinez-Salazar and S. J. Organ, J. Mater. Sci., 1985, 20, 1625 CAS.
  21. Notice that, by contrast, the usual solvent-mediated attraction forces would not determine any intramolecular contraction in a very concentrated solution—nor, for that matter, even in the polymer bulk by extrapolation—because the energy of any interaction is taken to depend solely on the existence of the interatomic contact, with no reduction of configurational degrees of freedom.
  22. P. G. de Gennes, Rep. Prog. Phys., 1969, 32, 187 CrossRef; J. Phys. (Paris), 1976, 77, 1445 Search PubMed.
  23. S. Brueckner and S. V. Meille, Nature, 390, 155 Search PubMed; S. V. Meille, S. Brueckner and W. Porzio, Macromolecules, 1990, 23, 4114 CrossRef CAS; R. A. Campbell, P. J. Phillips and J. S. Lin, Polymer, 1993, 34, 4809 CAS.
  24. S. J. Organ and A. Keller, J. Mater. Sci., 1985, 20, 1602 CAS.
  25. M. Imai, K. Kaji and T. Kanaya, Macromolecules, 1994, 27, 7103 CrossRef CAS; M. Imai, K. Kaji, T. Kanaya and Y. Sakai, Phys. Rev. B, 1995, 52, 12696 CrossRef CAS; K. Kaji and M. Imai, in Proc. Int. Symp. on Physics of Complex Liquids, ed. F. Yonezawa, K. Tsuji, K. Kaji, M. Doi and T. Fujiwara, Nagoya, Japan, November 1997 Search PubMed.
  26. N. J. Terrill, P. A. Fairclough, E. Towns-Andrews, B. U. Komanschek, R. J. Young and A. J. Ryan, Polym. Commun., 1998, 39, 2381 Search PubMed.
  27. P. G. de Gennes, J. Phys. Lett., 1975, 36, L55 Search PubMed.
  28. G. Allegra and F. Ganazzoli, Gazz. Chim. It., 1987, 117, 99 CAS.
  29. T. Yamamoto, J. Chem. Phys., 1998, 109, 4638 CrossRef CAS.
  30. J. P. K. Doye and D. Frenkel, J. Chem. Phys., 1998, 109, 10033 CrossRef CAS.
  31. C. Liu and M. Muthukumar, J. Chem. Phys., 1998, 109, 2536 CrossRef CAS.
  32. L. Toma, S. Toma and J. A. Subirana, Macromolecules, 1998, 31, 2328 CrossRef CAS.
  33. C.-M. Chen and P. G. Higgs, J. Chem. Phys., 1998, 108, 4305 CrossRef CAS.
  34. Yu. A. Kuznetsov, E. G. Timoshenko and K. A. Dawson, J. Chem. Phys., 1995, 1038, 4305.
  35. G. Allegra and F. Ganazzoli, Gazz. Chim. It., 1987, 117, 599 CAS.
  36. B. Wunderlich, M. Moeller, J. Grebowicz and H. Baur, Adv. Polym. Sci., 1988, 87, 1; G. Ungar, Polymer, 1993, 34, 2050 CAS; S. V. Meille and G. Allegra, Macromolecules, 1995, 28, 7764 CrossRef CAS.
  37. D. C. Bassett, S. Block and G. J. Piermarini, J. Appl. Phys., 1974, 45, 4186 CrossRef CAS.
  38. The multiplicity N is given by the number of distinct eulerian trails to construct the aggregate (see ref. 39) times the number of different ways to choose a stem in a bundle after which to start a connection with the next bundle of the aggregate. This makes N dependent on the number of stems in the bundles; as an example, in the aggregates 2a and 2b of Fig. 3, we respectively have N=(p1– 1) and N=(p1– 1)(p2– 1), pi being the number of stems in the ith bundle.
  39. F. Harary, Graph Theory, Addison-Wesley, Philippines, 1969, chs. 13, 4 and 7 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.