The structure of molten mixtures of iron(III) chloride with caesium chloride

(Note: The full text of this document is currently only available in the PDF Version )

G. A. Voyiatzis, A. G. Kalampounias and G. N. Papatheodorou


Abstract

Raman spectroscopy has been used to elucidate the structure of molten iron(III) chloride and its binary mixtures with caesium chloride. In order to overcome difficulties arising from the dark coloration of these melts and to ensure the spectral features, both conventional resonance Raman and micro-Raman spectra have been obtained. The spectral changes upon melting the solids Cs2NaFeCl6, CsFeCl4 and FeCl3 have also been measured. The FeCl4- tetrahedra were found to be present in both the solid and molten CsFeCl4, while a change of coordination from six-fold (FeCl63-) to four-fold (FeCl4-) occurs upon melting Cs2NaFeCl6. The FeCl4- tetrahedra are the predominant species in CsCl–FeCl3 mixtures containing up to 50 mol% FeCl3. The systematics and the temperature dependence of the spectra of the molten mixtures with mole fractions from 50 to 100 mol% FeCl3 indicate the presence of Fe2Cl7-, FeCl2+ and Fe2Cl5+ ionic species. Resonance Raman spectra of molten FeCl3 were measured and compared with the spectra of the corresponding solid and vapor. The data are interpreted to indicate a self-ionization of the molecular Fe2Cl6 melt: 2Fe2Cl6Fe2Cl5+ +Fe2Cl7-. The proposed model accounts for both the near-ionic conductivity of the melt and the structural data obtained by neutron diffraction.


References

  1. H. A. Andreasen and N. J. Bjerrum, Inorg. Chem., 1975, 14, 1807 CrossRef CAS.
  2. H. A. Andreasen and N. J. Bjerrum, Inorg. Chem., 1978, 17, 3605 CrossRef CAS.
  3. H. A. Andreasen, N. J. Bjerrum and N. H. Hansen, J. Chem. Eng. Data, 1980, 25, 236 CrossRef CAS.
  4. R. J. Gale and R. A. Osteryoung, in Molten Salt Technology, ed. D. G. Lovering and R. J. Gale, Plenum Press, New York, 1983, pp. 55–78 Search PubMed.
  5. G. Stewart and C. L. Hussey, Proc. XI Int. Symp. Molten Salts, ECS 98-11, Electrocemical Society, 1998, p. 21 Search PubMed.
  6. M. Brooker and G. N. Papatheodorou, Adv. Molten Salt Chem., 1983, 5, 27 Search PubMed.
  7. M. P. Tosi, D. K. Price and M. L. Saboungi, Annu. Rev. Phys. Chem., 1993, 44, 173 CrossRef CAS.
  8. D. L. Price, M. L. Saboungi, J. Wang, S. C. Moss and R. L. Leheny, Phys. Rev. B, 1998, 57, 10496 CrossRef CAS.
  9. Y. S. Badyal, M. L. Saboungi, D. L. Price, D. R. Haeffner and S. D. Shastri, Europhys. Lett., 1997, 39, 19 Search PubMed.
  10. Z. Akdeniz, G. Pastore and M. P. Tosi, Nuovo Cimento, 1998, 20D, 595 Search PubMed.
  11. L. Nalbandian and G. N. Papatheodorou, High Temp. Sci., 1990, 28, 49 Search PubMed and references therein.
  12. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, New York, 5th edn., 1986 Search PubMed.
  13. T. Tomita, C. E. Sjogren, P. Klaeboe, G. N. Papatheodorou and E. Rytter, J. Raman Spectrosc., 1983, 14, 415 CAS.
  14. G. N. Papatheodorou and G. A. Voyiatzis, Chem. Phys. Lett., 1999, 303, 151 CrossRef CAS.
  15. G. N. Papatheodorou, J. Chem. Phys., 1977, 66, 2893 CrossRef CAS.
  16. B. Borresen, V. Dracopoulos, G. Photiadis, B. Gilbert and G. N. Papatheodorou, Proc. X Int. Symp. Molten Salts, ECS 96-7, Elec-trochemical Society, 1996, p. 11 Search PubMed.
  17. V. Dracopoulos, B. Gilbert, B. Borresen, G. M. Photiadis and G. N. Papatheodorou, J. Chem. Soc., Faraday Trans., 1997, 93, 3081 RSC.
  18. V. Dracopoulos, B. Gilbert and G. N. Papatheodorou, J. Chem. Soc., Faraday Trans., 1998, 94, 1601 Search PubMed.
  19. G. M. Photiadis, B. Borresen and G. N. Papatheodorou, J. Chem. Soc., Faraday Trans., 1998, 94, 1605 Search PubMed.
  20. E. A. Pavlatou, P. A. Madden and M. Wilson, J. Chem. Phys., 1997, 107, 10446 CrossRef CAS.
  21. R. Takagi, F. Hutchinson, P. A. Madden, A. K. Adya and M. Gaune-Escard, J. Phys. Condense Matter, 1999, 11, 645 Search PubMed.
  22. L. R. Morss, M. Siegal, L. Stengez and N. Edelstein, Inorg. Chem., 1970, 9, 1771 CrossRef CAS.
  23. M. Prien and H. J. Seifert, J. Thermal Anal., 1995, 45, 349 Search PubMed.
  24. M. T. Kovsarnechan, J. Roziere and D. Mascherpa-Corral, J. Inorg. Nucl. Chem., 1978, 40, 2009 CAS.
  25. G. Meyer, Z. Anorg. Allg. Chem., 1977, 436, 87 CAS.
  26. G. N. Papatheodorou and M. A. Capote, J. Chem. Phys., 1978, 69, 2067 CrossRef CAS and references therein.
  27. G. N. Papatheodorou, Curr. Top. Mater. Sci., 1982, 10, 251 Search PubMed.
  28. H. A. Øye, E. Rytter, P. Klaeboe and S. J. Cyvin, Acta Chem. Scand., 1971, 25, 559.
  29. S. A. Solin, Physica, 1980, 99B, 443 Search PubMed and references therein.
  30. S. I. Troyanov, Russ. J. Inorg. Chem. (Engl. transl.), 1993, 38, 1821.
Click here to see how this site uses Cookies. View our privacy policy here.