pH fluctuations in unilamellar vesicles

(Note: The full text of this document is currently only available in the PDF Version )

José A. Fornés, Amando S. Ito, Rui Curi and Joaquim Procopio


Abstract

pH fluctuations in small unilamellar vesicles (SUV) are theoretically estimated. We determine that these fluctuations are dependent on macroscopic variables such as pH, pKa, buffer group concentration and surface electrical potential. Based on a previously reported definition of buffer electrical capacitance (Procopio and Forne′s, Phys. Rev. E, 1995, 51, 829) an equation is derived which relates the pH fluctuation, the buffering power and the SUV size. We also derived an equation for the mean square charge thermal fluctuation using the fluctuation–dissipation theorem which coincides with that independently obtained by Kirkwood and Shumaker (Proc. Natl. Acad. Sci., 1952, 38, 863) using mechanical statistical methods. From our results it is inferred that measurement of pH in small systems has to be performed near the pK of the buffer groups in order that the fluctuational errors be minimized. We show that pH fluctuations diminish with increasing the size of the SUV and the predicted pH fluctuations decrease as the surface potential becomes less negative as a consequence of decreasing density of charged groups in the inner vesicular surface. It is predicted that measurable effects will appear on the fluorescence detection due to protonic fluctuations close to the pH sensing region of the probes.


References

  1. J. A. Hamilton, J. Lipid Res., 1998, 39, 467 Search PubMed.
  2. F. Kamp, D. Zakim, F. Zhang, N. Noy and J. A. Hamilton, Biochemistry, 1995, 34, 11928 CrossRef CAS.
  3. F. Kamp and J. A. Hamilton, Biochemistry, 1993, 32, 11074 CrossRef CAS.
  4. J. Gutknecht, J. Membr. Biol., 1988, 106, 83 Search PubMed.
  5. J. A. Hamilton and D. P. Cistola, Proc. Natl. Acad. Sci., 1986, 83, 82 CAS.
  6. F. Kamp and J. A. Hamilton, Proc. Natl. Acad. Sci., 1992, 89, 11367 CAS.
  7. M. Gutman and E. Nachliel, Biochim. Biophys. Acta, 1990, 1015, 391 CrossRef CAS.
  8. R. Kraayenhof, G. J. Sterk and H. W. F. Sang, Biochemistry, 1993, 32, 10057 CrossRef CAS.
  9. G. Cevc and D. Marsh, Phospholipid Bilayers, John Wiley & Sons, NY, 1987 Search PubMed.
  10. C. Tanford, Adv. Protein Chem., 1962, 17, 69.
  11. M. S. Fernández and P. Fromherz, J. Phys. Chem., 1977, 81, 1755 CrossRef.
  12. M. Thelen, G. Petrone, P. S. O'Shea and A. Azzi, Biochim. Biophys. Acta, 1984, 766, 161 CrossRef CAS.
  13. J. Miyazaki, K. Hideg and D. Marsh, Biochim. Biophys. Acta, 1984, 1103, 62.
  14. P. Mitchell and J. Moyle, Biochem. J., 1967, 104, 588 CAS.
  15. R. W. Putnam, in Cell Physiology Source Book, ed. N. Sperelakis, Academic Press, NY, 1998 Search PubMed.
  16. J. Procopio and J. A. Fornés, Phys. Rev. E, 1997, 55, 6285 CrossRef CAS.
  17. J. Procopio and J. A. Fornés, Phys. Rev. E, 1995, 51, 829 CrossRef CAS.
  18. J. A. Fornés, Phys. Rev. E, 1998, 57, 2110 CrossRef CAS.
  19. J. G. Kirkwood and J. B. Shumaker, Proc. Natl. Acad. Sci., 1952, 38, 863 CAS.
  20. S. N. Timasheff, in Biological Polyelectrolytes, Marcel Dekker, NY, 1970, vol. 3, ch. 1 Search PubMed.
  21. Z. R. Grabowski and A. Grabowska, Z. Phys. Chem., 1976, 101, 197 CAS.
  22. E. Van der Donckt, Prog. React. Kinet., 1970, 5, 273 Search PubMed.
  23. W. Rettig and R. Lapouyade, Fluorescence probes based in TICT states, in Topics in Fluorescence Spectroscopy, ed. J. R. Lakowicz, Plenum Press, NY, 1994, vol. 4, ch. 5 Search PubMed.
  24. H. Szmacinski and J. R. Lakowicz, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, ed. J. R. Lakowicz, Plenum Press, NY, 1994, vol. 4, ch. 5 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.