Analysis of linear reaction systems with two linearly independent steps on the basis of the absorbance triangle and the formal integration

(Note: The full text of this document is currently only available in the PDF Version )

J. Polster


Abstract

Linear reaction systems consist by definition of first-order reaction steps. Linearly independent reactions are independent of reaction order. Each reaction mechanism consists of a distinct number (s) of linearly independent reaction steps. Thus, the mechanism A→B→C can be described by two linearly independent reactions as is also true for A→B, C→D (s=2). Subsequently, a general method is described for the spectrometric kinetic evaluation of linear reactions (s=2). The differential geometric analysis of the space spread out of the absorbances at two different wavelengths leads to the so-called ‘absorbance triangle’. The application of the concept of parallel projection on this absorbance triangle provides quantities (zi) which are formal in close connection to the concentration equations describing the reaction system. The evaluation of differential equations which can be established by zi leads to the searched eigenvalues of the system in combination with the method of formal integration. The results obtained are in accordance with theorem 2 of kinetics (two strictly linear reaction systems having the same number of linearly independent reaction steps cannot be distinguished from each other by purely spectroscopic means). The procedure and precision of evaluation are demonstrated by the investigation of the spontaneous hydrolysis of Boc-gly-ONP (N-tert-butoxycarbonyl acetate) and o-NPA (o-nitrophenyl acetate) in borax buffer (pH=8.7, temperature 25.0°C).


References

  1. H. Mauser, Formale Kinetik, Bertelsmann Universitätsverlag, Düsseldorf, 1974 Search PubMed.
  2. J. Polster, Reaktionskinetische Auswertung spektroskopischer Medaten, Vieweg-Verlag, Wiesbaden, 1995 Search PubMed.
  3. H. O. Hartley, Technometrics, Vol. 3 ( 1961).
  4. D. Marquardt, J. Soc. Ind. Appl. Math., 1963, 11, 431 Search PubMed.
  5. P. R. Berington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 1969 Search PubMed.
  6. N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrenner and D. H. Bent, SPSS Statistical Package for the Social Sciences, New York, 1975 Search PubMed.
  7. S. W. Provencher, Biophys. J., 1976, 16, 27 CAS.
  8. S. W. Provencher, J. Chem. Phys., 1976, 64, 2772 CrossRef CAS.
  9. J. C. Sernberg, H. S. Stillo and R. H. Schwendeman, Anal. Chem., 1960, 32, 84 CrossRef.
  10. F. P. Zscheile, jr,, Hazel C. Murray, G. A. Baker and R. G. Peddicord, Anal. Chem., 1962, 34, 1776 CrossRef.
  11. I. S. Herschberg, Fresenius Z. Anal. Chem., 1964, 205, 180 CAS.
  12. D. J. Leggett and W. A. E. McBryde, Anal. Chem., 1975, 47, 1065 CrossRef CAS.
  13. D. J. Leggett, Anal. Chem., 1977, 49, 276 CrossRef CAS.
  14. S. Ebel, E. Glaser, S. Abdulla, U. Steffens and V. Walter, Fresenius Z. Anal. Chem., 1982, 313, 24 CAS.
  15. D. L. Massart, B. G. M. Vandeginste, S. N. Demmig, Y. Michotte and L. Kaufman, Data Handling in Science and Technology 2: Chemometrics: a Textbook, Elsevier, Amsterdam, 1988 Search PubMed.
  16. E. R. Malinowaki and D. G. Howery, Factor Analysis in Chemistry, Wiley, New York, 1980 Search PubMed.
  17. J. A. Weismüller and A. Ahanady, TrAc Trends Anal. Chem. (Pers. Ed.), 1992, 11, 86 CrossRef.
  18. H. Martens and T. Naes, Multivariate Calibration, J. Wiley & Sons, Chichester, 1993 Search PubMed.
  19. M. Wollenweber, PhD Thesis, TU-München-Weihenstephan, H. Utz Verlag Wissenschaft, München, 1997, ISBN 3-89 6 75-170-0.
  20. J. Polster, Ber. Bunsenges. Phys. Chem., 1998, 102, 1496 CAS.
  21. G. Lachmann, PhD Thesis, Tübingen, 1973(Germany).
  22. G. Kortüm and H. Lachmann, Einführung in die chemische Thermodynamik, Verlag Chemie, Weinheim, Vandenhoeck & Ruprecht, Göttingen, 1981 Search PubMed.
  23. G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley—VCH Verlagsgesellschaft, Weinheim, 1998 Search PubMed.
  24. H. Mauser and J. Polster, Z. Naturforsch., Teil A, 1995, 50, 1031 CAS.
  25. J. Polster, Chem. Phys., 1999, 240, 331 CrossRef CAS.
  26. H. Mauser and J. Polster, Z. Phys. Chem. N. F., 1983, 138, 87 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.