Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols

(Note: The full text of this document is currently only available in the PDF Version )

Thomas F. Mentel, Martin Sohn and Andreas Wahner


Abstract

The heterogeneous hydrolysis of N2O5 was investigated on NaHSO4, Na2SO4, and NaNO3 aerosols. The experiments were performed in the large Aerosol Chamber at FZ Jülich at room temperature and ambient pressure for several relative humidities. These salts are components of aerosols in the marine and coastal boundary layer. For the sodium sulfate aerosols at relative humidities of 50–70% the reaction probabilities γN2O5 were in the range of 0.02–0.04. For NaNO3 aerosol at similar relative humidities we observed γN2O5 of 0.0018–0.0032. With increasing relative humidity, i.e. with increasing dilution of the nitrate concentration in the aerosol droplets, γN2O5 increases to 0.023 at 90% relative humidity. Our observation of decreasing γN2O5 with increasing nitrate concentration can be explained within the framework of an ionic mechanism for the hydrolysis of N2O5, if the recombination reaction of NO2+ with NO3- to N2O5 is considered. By a steady state analysis we derived analytical expressions of γN2O5 as a function of the nitrate concentration for a reaction either throughout the aerosol volume or in a thin surface shell. Accordingly, increasing nitrate concentration should enhance the lifetime of physically dissolved N2O5(aq) and as a consequence the heterogeneous hydrolysis of N2O5 should change from a near-surface to a volume reaction. The observation of such a specific nitrate effect can be regarded as further experimental evidence for the ionic reaction mechanism in the uptake of N2O5 on aqueous aerosols. A nitrate effect may gain (local) importance in the atmosphere if increasing NOX emissions translate in an increasing nitrate fraction in the secondary aerosol of anthropogenic origin.


References

  1. D. H. Ehhalt, Phys. Chem. Chem. Phys., 1999, 1, 5401 RSC.
  2. F. J. Dentener and P. J. Crutzen, J. Geophys. Res., 1993, 98, 7149 CAS.
  3. J. M. Van Doren, L. R. Watson, P. Davidovits, D. R. Worsnop, M. S. Zahniser and C. E. Kolb, J. Phys. Chem., 1990, 94, 3265 CrossRef CAS.
  4. M. Mozurkewich and J. G. Calvert, J. Geophys. Res., 1988, 93, 15889.
  5. J. H. Hu and J. P. D. Abbatt, J. Phys. Chem., 1997, 101A, 871 Search PubMed.
  6. W. Behnke, C. George, V. Scheer and C. Zetzsch, J. Geophys. Res., 1997, 102, 3795 CrossRef CAS.
  7. S. M. Wall, W. John and J. L. Ondo, Atmos. Environ., 1988, 22, 1649 CrossRef CAS; M. Pósfai, J. R. Anderson and P. R. Buseck, J. Geophys. Res., 1995, 100, 23063 CAS.
  8. A. Wahner, Th. F. Mentel, M. Sohn and J. Stier, J. Geophys. Res, 1998, 103, 31103 CAS.
  9. G. N. Robinson, D. R. Worsnop, J. T. Jayne, C. E. Kolb and P. Davidovits, J. Geophys. Res., 1997, 102, 3583 CrossRef CAS.
  10. Th. F. Mentel, D. Bleilebens and A. Wahner, Atmos. Environ., 1996, 30, 4007 CrossRef CAS.
  11. I. N. Tang and H. R. Munkelwitz, J. Geophys. Res., 1994, 99, 18801 CrossRef.
  12. M. D. Cohen, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem., 1987, 91, 4563 CrossRef CAS.
  13. I. N. Tang, J. Geophys. Res., 1997, 102, 1883 CAS.
  14. A. Wahner, Th. F. Mentel and M. Sohn, Geophys. Res. Lett., 1998, 25, 2169 CrossRef CAS.
  15. M. Sohn, PhD Thesis, Philipps Universität, Marburg, 1998.
  16. N. A. Fuchs and A. G. Sutugin, in International Reviews of Aerosol Physics and Chemistry, ed. G. M. Hidy and J. R. Brock, Pergamon, New York, 1971, vol. 2, p. 1 Search PubMed.
  17. J. Stier, PhD Thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, 1996.
  18. P. V. Dankwerts, Gas–Liquid Reactions, McGraw-Hill, New York, 1970 Search PubMed.
  19. D. R. Hanson, A. R. Ravishankara and S. Solomon, J. Geophys. Res., 1994, 99, 3615 CrossRef CAS; A. Fried, B. E. Henry and J. G. Calvert, J. Geophys. Res., 1994, 99, 3517 CAS.
  20. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1965 Search PubMed.
  21. S. E. Schwartz and W. H. White, in Advances in Environmental Sciences and Engineering, ed. J. R. Pfafflin and E. N. Ziegler, Gordon and Breach, New York, 1981, vol. 4, p. 1 Search PubMed.
  22. R. Taylor, Electrophilic Aromatic Substitution, John Wiley, New York, 1990 Search PubMed.
  23. D. R. Hanson and E. R. Lovejoy, Geophys. Res. Lett., 1994, 21, 2401 CrossRef CAS; R. Zhang, M.-T. Leu and L. F. Keyser, Geophys. Res. Lett., 1995, 22, 1493 CAS.
  24. D. R. Hanson, Geophys. Res. Lett., 1997, 24, 1087 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.