Insitu analytical investigation of redox behavior of Cu-ZSM-5 catalysts

(Note: The full text of this document is currently only available in the PDF Version )

Carlo Dossi, Sandro Recchia, Andrea Pozzi, Achille Fusi, Vladimiro Dalsanto and Giuliano Moretti


Abstract

The utilization of insitu DRIFT spectroscopy combined with advanced thermoanalytical techniques (temperature programmed decomposition, TPDE; temperature programmed oxidative decomposition, TPOD) allows the characterization of redox behavior of copper ions inside ZSM-5 zeolites. The oxidation of carbonaceous impurities inside the solid matrix to CO and CO2 is demonstrated to be responsible for Cu(II)→Cu(I) reduction, since the formation of other oxidation products, namely O2, H2O2 or O2- ions, was not detected by mass spectrometry and DRIFT. The unusual kinetics of CO evolution in thermoanalytical experiments was attributed to the formation of a relatively stable Cu+···CO adduct characterized by a typical IR band at 2157 cm-1, which acts as a specific active site of a chromatographic adsorbent material.


References

  1. M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya and S. Kagawa, J. Chem. Soc., Chem. Commun., 1986, 1272 RSC; M. Iwamoto, H. Yahiro, N. Mizuno, W.-X. Zhang, Y. Mine, H. Furukawa and S. Kagawa, J. Phys. Chem., 1992, 96, 9360 CrossRef CAS.
  2. W. Held and A. Koenig, Ger. Offen, DE 3642018 (1987) to Volkswagen A. G; W. Held, A. Koenig, T. Richter and L. Puppe, SAE Paper 900496, 1990.
  3. G. Centi and S. Perathoner, Appl. Catal. A, 1995, 132, 179 CrossRef CAS.
  4. M. Shelef, Chem. Rev., 1995, 95, 209 CrossRef CAS.
  5. G. Moretti, Catal. Lett., 1994, 28, 143 CrossRef CAS.
  6. D. C. Sayle, C. R. A. Catlow, J. D. Gale, M. A. Perrin and P. Nortier, J. Phys. Chem. A, 1997, 101, 3331 CrossRef CAS.
  7. T. Beutel, J. Sarkany, G. D. Lei, J. Y. Yan and W. M. H. Sachtler, J. Phys. Chem., 1996, 100, 845 CrossRef CAS.
  8. R. Burch and P. J. Millington, Appl. Catal. B, 1993, 2, 101 CrossRef CAS.
  9. S. C. Larsen, A. Ajol, A. T. Bell and J. A. Reimer, J. Phys. Chem., 1994, 98, 11533 CrossRef CAS.
  10. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 4173 CrossRef CAS.
  11. S. Hu, J. A. Reiner and A. T. Bell, J. Phys. Chem. B, 1997, 101, 1869 CrossRef CAS.
  12. J. Sarkany, J. Mol. Struct., 1997, 410–411, 137 CrossRef CAS; ibid., 1997, 410–411, 95 Search PubMed.
  13. M. J. Remy and G. Poncelet, J. Phys. Chem., 1995, 99, 773 CrossRef CAS.
  14. G. Bellussi, C. Perego, A. Carati, S. Peratello, E. Previde Massara and G. Perego, Stud. Surf. Sci. Catal., 1994, 84, 85 CAS.
  15. C. Dossi, A. Fusi, G. Moretti, S. Recchia and R. Psaro, Appl. Catal. A, 1999, 4754, 1.
  16. C. Dossi, P. Losi and S. Calmotti, Ann. Chim. (Rome), 1993, 83, 233 Search PubMed.
  17. C. Dossi, A. Fusi, R. Psaro and G. M. Zanderighi, Appl. Catal., 1989, 46, 145 Search PubMed.
  18. C. Dossi, A. Fusi, R. Psaro and D. Roberto, Thermochim. Acta, 1991, 182, 273 CrossRef CAS.
  19. C. Dossi, A. Fusi and R. Psaro, Thermochim. Acta, 1994, 236, 165 CrossRef CAS.
  20. C. Dossi, A. Fusi, G. Molteni, S. Recchia and R. Psaro, Analyst, 1997, 122, 279 RSC.
  21. C. Dossi and A. Fusi, Anal. Chim. Acta, 1989, 217, 197 CrossRef CAS.
  22. N. S. Harris, Modern Vacuum Practice, McGraw-Hill, London, 1989, p. 67 Search PubMed.
  23. J. A. R. Van Veen, P. C. Jong-Versloot, G. M. M. Van Kessel and F. J. Feels, Thermochim. Acta, 1989, 152, 359 CrossRef CAS.
  24. G. Moretti, C. Dossi, A. Fusi, S. Recchia and R. Psaro, Appl. Catal. B, 1999, 20, 67 CrossRef CAS.
  25. N. Masciocchi, E. Corradi, A. Sironi, G. Moretti, G. Minelli and P. Porta, J. Solid State Chem., 1997, 131, 252 CrossRef CAS.
  26. W. K. Hall, X. Feng, J. Dumesic and R. Watwe, Catal. Lett., 1998, 52, 13 CrossRef CAS.
  27. G. Spoto, A. Zecchina, S. Bordiga, G. Ricchiardi, G. Martra, G. Leofanti and G. Petrini, Appl. Catal. B, 1994, 3, 151 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.